Loading…

Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption

The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and w...

Full description

Saved in:
Bibliographic Details
Main Authors: Lemos, Victor H. B., Almeida, Joao D. S., Paiva, Anselmo C., Junior, Geraldo B., Silva, Aristofanes C., Neto, Stelmo M. B., Lima, Alan C. M., Cipriano, Carolina L. S., Fernandes, Eduardo C., Silva, Marcia I. A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2007
container_issue
container_start_page 2002
container_title
container_volume
creator Lemos, Victor H. B.
Almeida, Joao D. S.
Paiva, Anselmo C.
Junior, Geraldo B.
Silva, Aristofanes C.
Neto, Stelmo M. B.
Lima, Alan C. M.
Cipriano, Carolina L. S.
Fernandes, Eduardo C.
Silva, Marcia I. A.
description The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and was performed with and without a hyperparameter optimization strategy using a TCN network. We apply these strategies to indi-vidual electric consumption time series. The TCN approach had superior results when compared to SES, ARIMA, and Gradient Boosting. The results show that the proposed process obtained low efficiency with approximately 1% or less improvement than the use of no optimization. However, the TCN itself showed promising results being the best approach in many of our tests.
doi_str_mv 10.1109/SMC42975.2020.9282960
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9282960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9282960</ieee_id><sourcerecordid>9282960</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-f83d5ad2a67b02f5aad90a61f67b514c875308cb5866a51f8eee75ae6c6677f13</originalsourceid><addsrcrecordid>eNotkN1KwzAAhaMgOOeeQIS8QGeSNn-XUjodbHrhvB5Zmsxo2pQ0nfTt7XBXh8P5-C4OAI8YLTFG8uljWxZEcrokiKClJIJIhq7AQnKBORFYUMLINZgRynmGGaW34K7vv9FEF1jMgNmZpgtReViG9hT8kFxop_Zm0m-IP1B1nXemhjZEuArRaNUn1x7huq3dydXDhG5Dm778CCtvdIpOw6o18Tiehf3QdGfhPbixyvdmcck5-FxVu_I127y_rMvnTeYIylNmRV5TVRPF-AERS5WqJVIM26lTXGjBaY6EPlDBmKLYCmMMp8owzRjnFudz8PDvddOy76JrVBz3l1fyPzX-WUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption</title><source>IEEE Xplore All Conference Series</source><creator>Lemos, Victor H. B. ; Almeida, Joao D. S. ; Paiva, Anselmo C. ; Junior, Geraldo B. ; Silva, Aristofanes C. ; Neto, Stelmo M. B. ; Lima, Alan C. M. ; Cipriano, Carolina L. S. ; Fernandes, Eduardo C. ; Silva, Marcia I. A.</creator><creatorcontrib>Lemos, Victor H. B. ; Almeida, Joao D. S. ; Paiva, Anselmo C. ; Junior, Geraldo B. ; Silva, Aristofanes C. ; Neto, Stelmo M. B. ; Lima, Alan C. M. ; Cipriano, Carolina L. S. ; Fernandes, Eduardo C. ; Silva, Marcia I. A.</creatorcontrib><description>The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and was performed with and without a hyperparameter optimization strategy using a TCN network. We apply these strategies to indi-vidual electric consumption time series. The TCN approach had superior results when compared to SES, ARIMA, and Gradient Boosting. The results show that the proposed process obtained low efficiency with approximately 1% or less improvement than the use of no optimization. However, the TCN itself showed promising results being the best approach in many of our tests.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781728185262</identifier><identifier>EISBN: 1728185262</identifier><identifier>DOI: 10.1109/SMC42975.2020.9282960</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy consumption ; Forecasting ; Optimization ; Power systems ; Statistical analysis ; Task analysis ; Temporal Convolutional Network ; Time Series ; Time series analysis</subject><ispartof>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, p.2002-2007</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9282960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9282960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lemos, Victor H. B.</creatorcontrib><creatorcontrib>Almeida, Joao D. S.</creatorcontrib><creatorcontrib>Paiva, Anselmo C.</creatorcontrib><creatorcontrib>Junior, Geraldo B.</creatorcontrib><creatorcontrib>Silva, Aristofanes C.</creatorcontrib><creatorcontrib>Neto, Stelmo M. B.</creatorcontrib><creatorcontrib>Lima, Alan C. M.</creatorcontrib><creatorcontrib>Cipriano, Carolina L. S.</creatorcontrib><creatorcontrib>Fernandes, Eduardo C.</creatorcontrib><creatorcontrib>Silva, Marcia I. A.</creatorcontrib><title>Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption</title><title>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and was performed with and without a hyperparameter optimization strategy using a TCN network. We apply these strategies to indi-vidual electric consumption time series. The TCN approach had superior results when compared to SES, ARIMA, and Gradient Boosting. The results show that the proposed process obtained low efficiency with approximately 1% or less improvement than the use of no optimization. However, the TCN itself showed promising results being the best approach in many of our tests.</description><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Optimization</subject><subject>Power systems</subject><subject>Statistical analysis</subject><subject>Task analysis</subject><subject>Temporal Convolutional Network</subject><subject>Time Series</subject><subject>Time series analysis</subject><issn>2577-1655</issn><isbn>9781728185262</isbn><isbn>1728185262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1KwzAAhaMgOOeeQIS8QGeSNn-XUjodbHrhvB5Zmsxo2pQ0nfTt7XBXh8P5-C4OAI8YLTFG8uljWxZEcrokiKClJIJIhq7AQnKBORFYUMLINZgRynmGGaW34K7vv9FEF1jMgNmZpgtReViG9hT8kFxop_Zm0m-IP1B1nXemhjZEuArRaNUn1x7huq3dydXDhG5Dm778CCtvdIpOw6o18Tiehf3QdGfhPbixyvdmcck5-FxVu_I127y_rMvnTeYIylNmRV5TVRPF-AERS5WqJVIM26lTXGjBaY6EPlDBmKLYCmMMp8owzRjnFudz8PDvddOy76JrVBz3l1fyPzX-WUA</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Lemos, Victor H. B.</creator><creator>Almeida, Joao D. S.</creator><creator>Paiva, Anselmo C.</creator><creator>Junior, Geraldo B.</creator><creator>Silva, Aristofanes C.</creator><creator>Neto, Stelmo M. B.</creator><creator>Lima, Alan C. M.</creator><creator>Cipriano, Carolina L. S.</creator><creator>Fernandes, Eduardo C.</creator><creator>Silva, Marcia I. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20201011</creationdate><title>Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption</title><author>Lemos, Victor H. B. ; Almeida, Joao D. S. ; Paiva, Anselmo C. ; Junior, Geraldo B. ; Silva, Aristofanes C. ; Neto, Stelmo M. B. ; Lima, Alan C. M. ; Cipriano, Carolina L. S. ; Fernandes, Eduardo C. ; Silva, Marcia I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-f83d5ad2a67b02f5aad90a61f67b514c875308cb5866a51f8eee75ae6c6677f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Optimization</topic><topic>Power systems</topic><topic>Statistical analysis</topic><topic>Task analysis</topic><topic>Temporal Convolutional Network</topic><topic>Time Series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lemos, Victor H. B.</creatorcontrib><creatorcontrib>Almeida, Joao D. S.</creatorcontrib><creatorcontrib>Paiva, Anselmo C.</creatorcontrib><creatorcontrib>Junior, Geraldo B.</creatorcontrib><creatorcontrib>Silva, Aristofanes C.</creatorcontrib><creatorcontrib>Neto, Stelmo M. B.</creatorcontrib><creatorcontrib>Lima, Alan C. M.</creatorcontrib><creatorcontrib>Cipriano, Carolina L. S.</creatorcontrib><creatorcontrib>Fernandes, Eduardo C.</creatorcontrib><creatorcontrib>Silva, Marcia I. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lemos, Victor H. B.</au><au>Almeida, Joao D. S.</au><au>Paiva, Anselmo C.</au><au>Junior, Geraldo B.</au><au>Silva, Aristofanes C.</au><au>Neto, Stelmo M. B.</au><au>Lima, Alan C. M.</au><au>Cipriano, Carolina L. S.</au><au>Fernandes, Eduardo C.</au><au>Silva, Marcia I. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption</atitle><btitle>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2020-10-11</date><risdate>2020</risdate><spage>2002</spage><epage>2007</epage><pages>2002-2007</pages><eissn>2577-1655</eissn><eisbn>9781728185262</eisbn><eisbn>1728185262</eisbn><abstract>The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and was performed with and without a hyperparameter optimization strategy using a TCN network. We apply these strategies to indi-vidual electric consumption time series. The TCN approach had superior results when compared to SES, ARIMA, and Gradient Boosting. The results show that the proposed process obtained low efficiency with approximately 1% or less improvement than the use of no optimization. However, the TCN itself showed promising results being the best approach in many of our tests.</abstract><pub>IEEE</pub><doi>10.1109/SMC42975.2020.9282960</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2577-1655
ispartof 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, p.2002-2007
issn 2577-1655
language eng
recordid cdi_ieee_primary_9282960
source IEEE Xplore All Conference Series
subjects Energy consumption
Forecasting
Optimization
Power systems
Statistical analysis
Task analysis
Temporal Convolutional Network
Time Series
Time series analysis
title Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Temporal%20Convolutional%20Network%20applied%20for%20Forecasting%20Individual%20Monthly%20Electric%20Energy%20Consumption&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Lemos,%20Victor%20H.%20B.&rft.date=2020-10-11&rft.spage=2002&rft.epage=2007&rft.pages=2002-2007&rft.eissn=2577-1655&rft_id=info:doi/10.1109/SMC42975.2020.9282960&rft.eisbn=9781728185262&rft.eisbn_list=1728185262&rft_dat=%3Cieee_CHZPO%3E9282960%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-f83d5ad2a67b02f5aad90a61f67b514c875308cb5866a51f8eee75ae6c6677f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9282960&rfr_iscdi=true