Loading…
Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption
The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and w...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2007 |
container_issue | |
container_start_page | 2002 |
container_title | |
container_volume | |
creator | Lemos, Victor H. B. Almeida, Joao D. S. Paiva, Anselmo C. Junior, Geraldo B. Silva, Aristofanes C. Neto, Stelmo M. B. Lima, Alan C. M. Cipriano, Carolina L. S. Fernandes, Eduardo C. Silva, Marcia I. A. |
description | The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and was performed with and without a hyperparameter optimization strategy using a TCN network. We apply these strategies to indi-vidual electric consumption time series. The TCN approach had superior results when compared to SES, ARIMA, and Gradient Boosting. The results show that the proposed process obtained low efficiency with approximately 1% or less improvement than the use of no optimization. However, the TCN itself showed promising results being the best approach in many of our tests. |
doi_str_mv | 10.1109/SMC42975.2020.9282960 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9282960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9282960</ieee_id><sourcerecordid>9282960</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-f83d5ad2a67b02f5aad90a61f67b514c875308cb5866a51f8eee75ae6c6677f13</originalsourceid><addsrcrecordid>eNotkN1KwzAAhaMgOOeeQIS8QGeSNn-XUjodbHrhvB5Zmsxo2pQ0nfTt7XBXh8P5-C4OAI8YLTFG8uljWxZEcrokiKClJIJIhq7AQnKBORFYUMLINZgRynmGGaW34K7vv9FEF1jMgNmZpgtReViG9hT8kFxop_Zm0m-IP1B1nXemhjZEuArRaNUn1x7huq3dydXDhG5Dm778CCtvdIpOw6o18Tiehf3QdGfhPbixyvdmcck5-FxVu_I127y_rMvnTeYIylNmRV5TVRPF-AERS5WqJVIM26lTXGjBaY6EPlDBmKLYCmMMp8owzRjnFudz8PDvddOy76JrVBz3l1fyPzX-WUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption</title><source>IEEE Xplore All Conference Series</source><creator>Lemos, Victor H. B. ; Almeida, Joao D. S. ; Paiva, Anselmo C. ; Junior, Geraldo B. ; Silva, Aristofanes C. ; Neto, Stelmo M. B. ; Lima, Alan C. M. ; Cipriano, Carolina L. S. ; Fernandes, Eduardo C. ; Silva, Marcia I. A.</creator><creatorcontrib>Lemos, Victor H. B. ; Almeida, Joao D. S. ; Paiva, Anselmo C. ; Junior, Geraldo B. ; Silva, Aristofanes C. ; Neto, Stelmo M. B. ; Lima, Alan C. M. ; Cipriano, Carolina L. S. ; Fernandes, Eduardo C. ; Silva, Marcia I. A.</creatorcontrib><description>The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and was performed with and without a hyperparameter optimization strategy using a TCN network. We apply these strategies to indi-vidual electric consumption time series. The TCN approach had superior results when compared to SES, ARIMA, and Gradient Boosting. The results show that the proposed process obtained low efficiency with approximately 1% or less improvement than the use of no optimization. However, the TCN itself showed promising results being the best approach in many of our tests.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781728185262</identifier><identifier>EISBN: 1728185262</identifier><identifier>DOI: 10.1109/SMC42975.2020.9282960</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy consumption ; Forecasting ; Optimization ; Power systems ; Statistical analysis ; Task analysis ; Temporal Convolutional Network ; Time Series ; Time series analysis</subject><ispartof>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, p.2002-2007</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9282960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9282960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lemos, Victor H. B.</creatorcontrib><creatorcontrib>Almeida, Joao D. S.</creatorcontrib><creatorcontrib>Paiva, Anselmo C.</creatorcontrib><creatorcontrib>Junior, Geraldo B.</creatorcontrib><creatorcontrib>Silva, Aristofanes C.</creatorcontrib><creatorcontrib>Neto, Stelmo M. B.</creatorcontrib><creatorcontrib>Lima, Alan C. M.</creatorcontrib><creatorcontrib>Cipriano, Carolina L. S.</creatorcontrib><creatorcontrib>Fernandes, Eduardo C.</creatorcontrib><creatorcontrib>Silva, Marcia I. A.</creatorcontrib><title>Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption</title><title>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and was performed with and without a hyperparameter optimization strategy using a TCN network. We apply these strategies to indi-vidual electric consumption time series. The TCN approach had superior results when compared to SES, ARIMA, and Gradient Boosting. The results show that the proposed process obtained low efficiency with approximately 1% or less improvement than the use of no optimization. However, the TCN itself showed promising results being the best approach in many of our tests.</description><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Optimization</subject><subject>Power systems</subject><subject>Statistical analysis</subject><subject>Task analysis</subject><subject>Temporal Convolutional Network</subject><subject>Time Series</subject><subject>Time series analysis</subject><issn>2577-1655</issn><isbn>9781728185262</isbn><isbn>1728185262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1KwzAAhaMgOOeeQIS8QGeSNn-XUjodbHrhvB5Zmsxo2pQ0nfTt7XBXh8P5-C4OAI8YLTFG8uljWxZEcrokiKClJIJIhq7AQnKBORFYUMLINZgRynmGGaW34K7vv9FEF1jMgNmZpgtReViG9hT8kFxop_Zm0m-IP1B1nXemhjZEuArRaNUn1x7huq3dydXDhG5Dm778CCtvdIpOw6o18Tiehf3QdGfhPbixyvdmcck5-FxVu_I127y_rMvnTeYIylNmRV5TVRPF-AERS5WqJVIM26lTXGjBaY6EPlDBmKLYCmMMp8owzRjnFudz8PDvddOy76JrVBz3l1fyPzX-WUA</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Lemos, Victor H. B.</creator><creator>Almeida, Joao D. S.</creator><creator>Paiva, Anselmo C.</creator><creator>Junior, Geraldo B.</creator><creator>Silva, Aristofanes C.</creator><creator>Neto, Stelmo M. B.</creator><creator>Lima, Alan C. M.</creator><creator>Cipriano, Carolina L. S.</creator><creator>Fernandes, Eduardo C.</creator><creator>Silva, Marcia I. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20201011</creationdate><title>Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption</title><author>Lemos, Victor H. B. ; Almeida, Joao D. S. ; Paiva, Anselmo C. ; Junior, Geraldo B. ; Silva, Aristofanes C. ; Neto, Stelmo M. B. ; Lima, Alan C. M. ; Cipriano, Carolina L. S. ; Fernandes, Eduardo C. ; Silva, Marcia I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-f83d5ad2a67b02f5aad90a61f67b514c875308cb5866a51f8eee75ae6c6677f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Optimization</topic><topic>Power systems</topic><topic>Statistical analysis</topic><topic>Task analysis</topic><topic>Temporal Convolutional Network</topic><topic>Time Series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lemos, Victor H. B.</creatorcontrib><creatorcontrib>Almeida, Joao D. S.</creatorcontrib><creatorcontrib>Paiva, Anselmo C.</creatorcontrib><creatorcontrib>Junior, Geraldo B.</creatorcontrib><creatorcontrib>Silva, Aristofanes C.</creatorcontrib><creatorcontrib>Neto, Stelmo M. B.</creatorcontrib><creatorcontrib>Lima, Alan C. M.</creatorcontrib><creatorcontrib>Cipriano, Carolina L. S.</creatorcontrib><creatorcontrib>Fernandes, Eduardo C.</creatorcontrib><creatorcontrib>Silva, Marcia I. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lemos, Victor H. B.</au><au>Almeida, Joao D. S.</au><au>Paiva, Anselmo C.</au><au>Junior, Geraldo B.</au><au>Silva, Aristofanes C.</au><au>Neto, Stelmo M. B.</au><au>Lima, Alan C. M.</au><au>Cipriano, Carolina L. S.</au><au>Fernandes, Eduardo C.</au><au>Silva, Marcia I. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption</atitle><btitle>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2020-10-11</date><risdate>2020</risdate><spage>2002</spage><epage>2007</epage><pages>2002-2007</pages><eissn>2577-1655</eissn><eisbn>9781728185262</eisbn><eisbn>1728185262</eisbn><abstract>The task of predicting energy consumption is a problem of great interest in electric power companies. A minimal error prediction is essential for identifying inconsistencies in the monthly consumption reading process. This paper presents a methodology applied to electric consumption prediction and was performed with and without a hyperparameter optimization strategy using a TCN network. We apply these strategies to indi-vidual electric consumption time series. The TCN approach had superior results when compared to SES, ARIMA, and Gradient Boosting. The results show that the proposed process obtained low efficiency with approximately 1% or less improvement than the use of no optimization. However, the TCN itself showed promising results being the best approach in many of our tests.</abstract><pub>IEEE</pub><doi>10.1109/SMC42975.2020.9282960</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2577-1655 |
ispartof | 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, p.2002-2007 |
issn | 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_9282960 |
source | IEEE Xplore All Conference Series |
subjects | Energy consumption Forecasting Optimization Power systems Statistical analysis Task analysis Temporal Convolutional Network Time Series Time series analysis |
title | Temporal Convolutional Network applied for Forecasting Individual Monthly Electric Energy Consumption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Temporal%20Convolutional%20Network%20applied%20for%20Forecasting%20Individual%20Monthly%20Electric%20Energy%20Consumption&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Lemos,%20Victor%20H.%20B.&rft.date=2020-10-11&rft.spage=2002&rft.epage=2007&rft.pages=2002-2007&rft.eissn=2577-1655&rft_id=info:doi/10.1109/SMC42975.2020.9282960&rft.eisbn=9781728185262&rft.eisbn_list=1728185262&rft_dat=%3Cieee_CHZPO%3E9282960%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-f83d5ad2a67b02f5aad90a61f67b514c875308cb5866a51f8eee75ae6c6677f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9282960&rfr_iscdi=true |