Loading…

A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback

Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armband...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Michelle, Bulger, Miasya, Dai, Yue, Noel, Kira, Axon, Christopher, Brandenberger, Anna, Fay, Stephen, Gao, Zenghao, Gilmer, Saskia, Hamdan, Jad, Humane, Prateek, Jiang, Jennifer, Killian, Cole, Langleben, Ian, Li, Bonnie, Zamora, Alejandra Martinez, Mavromatis, Stylianos, Njini, Sasha, Riachi, Roland, Rong, Carrie, Zhen, Andy, Xiong, Marley
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3465
container_issue
container_start_page 3460
container_title
container_volume
creator Wang, Michelle
Bulger, Miasya
Dai, Yue
Noel, Kira
Axon, Christopher
Brandenberger, Anna
Fay, Stephen
Gao, Zenghao
Gilmer, Saskia
Hamdan, Jad
Humane, Prateek
Jiang, Jennifer
Killian, Cole
Langleben, Ian
Li, Bonnie
Zamora, Alejandra Martinez
Mavromatis, Stylianos
Njini, Sasha
Riachi, Roland
Rong, Carrie
Zhen, Andy
Xiong, Marley
description Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armbands are limited by their fixed electrode arrangement, which can negatively affect the classification of subtle finger gestures. We propose a low-cost, 3D-printed armband with fully adjustable electrode placement for the detection of single-finger tapping motions. We trained machine learning classifiers on features extracted from eight-channel sEMG signals to detect movement from nine fingers. We obtained a classification accuracy of 71.5 ± 1.1% for a K-Nearest Neighbours (KNN) classifier using features extracted from 500 ms windows of sEMG data. Moreover, a KNN model trained on 200 ms windows from a subset of particularly clean data obtained an accuracy of 93.0 ± 0.5%. We also introduce a novel haptic feedback mechanism to improve user experience when using the armband, and propose an augmented reality typing interface as a potential application of our armband.
doi_str_mv 10.1109/SMC42975.2020.9283117
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9283117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9283117</ieee_id><sourcerecordid>9283117</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-39304cd3056d9be42d82b0e3ead84dc0ecc1516b778cf64e35d50c4225fcd153</originalsourceid><addsrcrecordid>eNotkM1KAzEYAKMgWGufQIQ8gLvmd5M9rmtrhRYFCx5LNvm2Td2fkkShb69gT3MZ5jAI3VOSU0rKx491LVipZM4II3nJNKdUXaBZqTRVTFMtWcEu0YRJpTJaSHmNbmI8kD9bUD1BY4X5c_Ye_JDAPeDKHb5jMk0HuAp9YwaH2zHgeQc2hbE_jbtgjvtT9mQiOLzwww4CXo8_0MOQcN2ZGH3rrUl-HPCnT3u8NMfkLV4AuMbYr1t01ZouwuzMKdos5pt6ma3eXl7rapV5RnjKeMmJsI4TWbiyAcGcZg0BDsZp4SwBa6mkRaOUtm0hgEsniRWMydY6KvkU3f1nPQBsj8H3Jpy25z38FzARWpg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Michelle ; Bulger, Miasya ; Dai, Yue ; Noel, Kira ; Axon, Christopher ; Brandenberger, Anna ; Fay, Stephen ; Gao, Zenghao ; Gilmer, Saskia ; Hamdan, Jad ; Humane, Prateek ; Jiang, Jennifer ; Killian, Cole ; Langleben, Ian ; Li, Bonnie ; Zamora, Alejandra Martinez ; Mavromatis, Stylianos ; Njini, Sasha ; Riachi, Roland ; Rong, Carrie ; Zhen, Andy ; Xiong, Marley</creator><creatorcontrib>Wang, Michelle ; Bulger, Miasya ; Dai, Yue ; Noel, Kira ; Axon, Christopher ; Brandenberger, Anna ; Fay, Stephen ; Gao, Zenghao ; Gilmer, Saskia ; Hamdan, Jad ; Humane, Prateek ; Jiang, Jennifer ; Killian, Cole ; Langleben, Ian ; Li, Bonnie ; Zamora, Alejandra Martinez ; Mavromatis, Stylianos ; Njini, Sasha ; Riachi, Roland ; Rong, Carrie ; Zhen, Andy ; Xiong, Marley</creatorcontrib><description>Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armbands are limited by their fixed electrode arrangement, which can negatively affect the classification of subtle finger gestures. We propose a low-cost, 3D-printed armband with fully adjustable electrode placement for the detection of single-finger tapping motions. We trained machine learning classifiers on features extracted from eight-channel sEMG signals to detect movement from nine fingers. We obtained a classification accuracy of 71.5 ± 1.1% for a K-Nearest Neighbours (KNN) classifier using features extracted from 500 ms windows of sEMG data. Moreover, a KNN model trained on 200 ms windows from a subset of particularly clean data obtained an accuracy of 93.0 ± 0.5%. We also introduce a novel haptic feedback mechanism to improve user experience when using the armband, and propose an augmented reality typing interface as a potential application of our armband.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781728185262</identifier><identifier>EISBN: 1728185262</identifier><identifier>DOI: 10.1109/SMC42975.2020.9283117</identifier><language>eng</language><publisher>IEEE</publisher><subject>augmented reality ; Electrodes ; electromyography ; Feature extraction ; Fingers ; Haptic interfaces ; human computer interaction ; Machine learning ; Prosthetics ; User experience</subject><ispartof>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, p.3460-3465</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9283117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9283117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Michelle</creatorcontrib><creatorcontrib>Bulger, Miasya</creatorcontrib><creatorcontrib>Dai, Yue</creatorcontrib><creatorcontrib>Noel, Kira</creatorcontrib><creatorcontrib>Axon, Christopher</creatorcontrib><creatorcontrib>Brandenberger, Anna</creatorcontrib><creatorcontrib>Fay, Stephen</creatorcontrib><creatorcontrib>Gao, Zenghao</creatorcontrib><creatorcontrib>Gilmer, Saskia</creatorcontrib><creatorcontrib>Hamdan, Jad</creatorcontrib><creatorcontrib>Humane, Prateek</creatorcontrib><creatorcontrib>Jiang, Jennifer</creatorcontrib><creatorcontrib>Killian, Cole</creatorcontrib><creatorcontrib>Langleben, Ian</creatorcontrib><creatorcontrib>Li, Bonnie</creatorcontrib><creatorcontrib>Zamora, Alejandra Martinez</creatorcontrib><creatorcontrib>Mavromatis, Stylianos</creatorcontrib><creatorcontrib>Njini, Sasha</creatorcontrib><creatorcontrib>Riachi, Roland</creatorcontrib><creatorcontrib>Rong, Carrie</creatorcontrib><creatorcontrib>Zhen, Andy</creatorcontrib><creatorcontrib>Xiong, Marley</creatorcontrib><title>A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback</title><title>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armbands are limited by their fixed electrode arrangement, which can negatively affect the classification of subtle finger gestures. We propose a low-cost, 3D-printed armband with fully adjustable electrode placement for the detection of single-finger tapping motions. We trained machine learning classifiers on features extracted from eight-channel sEMG signals to detect movement from nine fingers. We obtained a classification accuracy of 71.5 ± 1.1% for a K-Nearest Neighbours (KNN) classifier using features extracted from 500 ms windows of sEMG data. Moreover, a KNN model trained on 200 ms windows from a subset of particularly clean data obtained an accuracy of 93.0 ± 0.5%. We also introduce a novel haptic feedback mechanism to improve user experience when using the armband, and propose an augmented reality typing interface as a potential application of our armband.</description><subject>augmented reality</subject><subject>Electrodes</subject><subject>electromyography</subject><subject>Feature extraction</subject><subject>Fingers</subject><subject>Haptic interfaces</subject><subject>human computer interaction</subject><subject>Machine learning</subject><subject>Prosthetics</subject><subject>User experience</subject><issn>2577-1655</issn><isbn>9781728185262</isbn><isbn>1728185262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEYAKMgWGufQIQ8gLvmd5M9rmtrhRYFCx5LNvm2Td2fkkShb69gT3MZ5jAI3VOSU0rKx491LVipZM4II3nJNKdUXaBZqTRVTFMtWcEu0YRJpTJaSHmNbmI8kD9bUD1BY4X5c_Ye_JDAPeDKHb5jMk0HuAp9YwaH2zHgeQc2hbE_jbtgjvtT9mQiOLzwww4CXo8_0MOQcN2ZGH3rrUl-HPCnT3u8NMfkLV4AuMbYr1t01ZouwuzMKdos5pt6ma3eXl7rapV5RnjKeMmJsI4TWbiyAcGcZg0BDsZp4SwBa6mkRaOUtm0hgEsniRWMydY6KvkU3f1nPQBsj8H3Jpy25z38FzARWpg</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Wang, Michelle</creator><creator>Bulger, Miasya</creator><creator>Dai, Yue</creator><creator>Noel, Kira</creator><creator>Axon, Christopher</creator><creator>Brandenberger, Anna</creator><creator>Fay, Stephen</creator><creator>Gao, Zenghao</creator><creator>Gilmer, Saskia</creator><creator>Hamdan, Jad</creator><creator>Humane, Prateek</creator><creator>Jiang, Jennifer</creator><creator>Killian, Cole</creator><creator>Langleben, Ian</creator><creator>Li, Bonnie</creator><creator>Zamora, Alejandra Martinez</creator><creator>Mavromatis, Stylianos</creator><creator>Njini, Sasha</creator><creator>Riachi, Roland</creator><creator>Rong, Carrie</creator><creator>Zhen, Andy</creator><creator>Xiong, Marley</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20201011</creationdate><title>A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback</title><author>Wang, Michelle ; Bulger, Miasya ; Dai, Yue ; Noel, Kira ; Axon, Christopher ; Brandenberger, Anna ; Fay, Stephen ; Gao, Zenghao ; Gilmer, Saskia ; Hamdan, Jad ; Humane, Prateek ; Jiang, Jennifer ; Killian, Cole ; Langleben, Ian ; Li, Bonnie ; Zamora, Alejandra Martinez ; Mavromatis, Stylianos ; Njini, Sasha ; Riachi, Roland ; Rong, Carrie ; Zhen, Andy ; Xiong, Marley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-39304cd3056d9be42d82b0e3ead84dc0ecc1516b778cf64e35d50c4225fcd153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>augmented reality</topic><topic>Electrodes</topic><topic>electromyography</topic><topic>Feature extraction</topic><topic>Fingers</topic><topic>Haptic interfaces</topic><topic>human computer interaction</topic><topic>Machine learning</topic><topic>Prosthetics</topic><topic>User experience</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Michelle</creatorcontrib><creatorcontrib>Bulger, Miasya</creatorcontrib><creatorcontrib>Dai, Yue</creatorcontrib><creatorcontrib>Noel, Kira</creatorcontrib><creatorcontrib>Axon, Christopher</creatorcontrib><creatorcontrib>Brandenberger, Anna</creatorcontrib><creatorcontrib>Fay, Stephen</creatorcontrib><creatorcontrib>Gao, Zenghao</creatorcontrib><creatorcontrib>Gilmer, Saskia</creatorcontrib><creatorcontrib>Hamdan, Jad</creatorcontrib><creatorcontrib>Humane, Prateek</creatorcontrib><creatorcontrib>Jiang, Jennifer</creatorcontrib><creatorcontrib>Killian, Cole</creatorcontrib><creatorcontrib>Langleben, Ian</creatorcontrib><creatorcontrib>Li, Bonnie</creatorcontrib><creatorcontrib>Zamora, Alejandra Martinez</creatorcontrib><creatorcontrib>Mavromatis, Stylianos</creatorcontrib><creatorcontrib>Njini, Sasha</creatorcontrib><creatorcontrib>Riachi, Roland</creatorcontrib><creatorcontrib>Rong, Carrie</creatorcontrib><creatorcontrib>Zhen, Andy</creatorcontrib><creatorcontrib>Xiong, Marley</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Michelle</au><au>Bulger, Miasya</au><au>Dai, Yue</au><au>Noel, Kira</au><au>Axon, Christopher</au><au>Brandenberger, Anna</au><au>Fay, Stephen</au><au>Gao, Zenghao</au><au>Gilmer, Saskia</au><au>Hamdan, Jad</au><au>Humane, Prateek</au><au>Jiang, Jennifer</au><au>Killian, Cole</au><au>Langleben, Ian</au><au>Li, Bonnie</au><au>Zamora, Alejandra Martinez</au><au>Mavromatis, Stylianos</au><au>Njini, Sasha</au><au>Riachi, Roland</au><au>Rong, Carrie</au><au>Zhen, Andy</au><au>Xiong, Marley</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback</atitle><btitle>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2020-10-11</date><risdate>2020</risdate><spage>3460</spage><epage>3465</epage><pages>3460-3465</pages><eissn>2577-1655</eissn><eisbn>9781728185262</eisbn><eisbn>1728185262</eisbn><abstract>Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armbands are limited by their fixed electrode arrangement, which can negatively affect the classification of subtle finger gestures. We propose a low-cost, 3D-printed armband with fully adjustable electrode placement for the detection of single-finger tapping motions. We trained machine learning classifiers on features extracted from eight-channel sEMG signals to detect movement from nine fingers. We obtained a classification accuracy of 71.5 ± 1.1% for a K-Nearest Neighbours (KNN) classifier using features extracted from 500 ms windows of sEMG data. Moreover, a KNN model trained on 200 ms windows from a subset of particularly clean data obtained an accuracy of 93.0 ± 0.5%. We also introduce a novel haptic feedback mechanism to improve user experience when using the armband, and propose an augmented reality typing interface as a potential application of our armband.</abstract><pub>IEEE</pub><doi>10.1109/SMC42975.2020.9283117</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2577-1655
ispartof 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, p.3460-3465
issn 2577-1655
language eng
recordid cdi_ieee_primary_9283117
source IEEE Xplore All Conference Series
subjects augmented reality
Electrodes
electromyography
Feature extraction
Fingers
Haptic interfaces
human computer interaction
Machine learning
Prosthetics
User experience
title A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%203D-Printed,%20Adjustable%20Armband%20for%20Electromyography-Based%20Finger%20Movement%20Classification%20With%20Haptic%20Feedback&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Wang,%20Michelle&rft.date=2020-10-11&rft.spage=3460&rft.epage=3465&rft.pages=3460-3465&rft.eissn=2577-1655&rft_id=info:doi/10.1109/SMC42975.2020.9283117&rft.eisbn=9781728185262&rft.eisbn_list=1728185262&rft_dat=%3Cieee_CHZPO%3E9283117%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-39304cd3056d9be42d82b0e3ead84dc0ecc1516b778cf64e35d50c4225fcd153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9283117&rfr_iscdi=true