Loading…
A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback
Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armband...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3465 |
container_issue | |
container_start_page | 3460 |
container_title | |
container_volume | |
creator | Wang, Michelle Bulger, Miasya Dai, Yue Noel, Kira Axon, Christopher Brandenberger, Anna Fay, Stephen Gao, Zenghao Gilmer, Saskia Hamdan, Jad Humane, Prateek Jiang, Jennifer Killian, Cole Langleben, Ian Li, Bonnie Zamora, Alejandra Martinez Mavromatis, Stylianos Njini, Sasha Riachi, Roland Rong, Carrie Zhen, Andy Xiong, Marley |
description | Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armbands are limited by their fixed electrode arrangement, which can negatively affect the classification of subtle finger gestures. We propose a low-cost, 3D-printed armband with fully adjustable electrode placement for the detection of single-finger tapping motions. We trained machine learning classifiers on features extracted from eight-channel sEMG signals to detect movement from nine fingers. We obtained a classification accuracy of 71.5 ± 1.1% for a K-Nearest Neighbours (KNN) classifier using features extracted from 500 ms windows of sEMG data. Moreover, a KNN model trained on 200 ms windows from a subset of particularly clean data obtained an accuracy of 93.0 ± 0.5%. We also introduce a novel haptic feedback mechanism to improve user experience when using the armband, and propose an augmented reality typing interface as a potential application of our armband. |
doi_str_mv | 10.1109/SMC42975.2020.9283117 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9283117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9283117</ieee_id><sourcerecordid>9283117</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-39304cd3056d9be42d82b0e3ead84dc0ecc1516b778cf64e35d50c4225fcd153</originalsourceid><addsrcrecordid>eNotkM1KAzEYAKMgWGufQIQ8gLvmd5M9rmtrhRYFCx5LNvm2Td2fkkShb69gT3MZ5jAI3VOSU0rKx491LVipZM4II3nJNKdUXaBZqTRVTFMtWcEu0YRJpTJaSHmNbmI8kD9bUD1BY4X5c_Ye_JDAPeDKHb5jMk0HuAp9YwaH2zHgeQc2hbE_jbtgjvtT9mQiOLzwww4CXo8_0MOQcN2ZGH3rrUl-HPCnT3u8NMfkLV4AuMbYr1t01ZouwuzMKdos5pt6ma3eXl7rapV5RnjKeMmJsI4TWbiyAcGcZg0BDsZp4SwBa6mkRaOUtm0hgEsniRWMydY6KvkU3f1nPQBsj8H3Jpy25z38FzARWpg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Michelle ; Bulger, Miasya ; Dai, Yue ; Noel, Kira ; Axon, Christopher ; Brandenberger, Anna ; Fay, Stephen ; Gao, Zenghao ; Gilmer, Saskia ; Hamdan, Jad ; Humane, Prateek ; Jiang, Jennifer ; Killian, Cole ; Langleben, Ian ; Li, Bonnie ; Zamora, Alejandra Martinez ; Mavromatis, Stylianos ; Njini, Sasha ; Riachi, Roland ; Rong, Carrie ; Zhen, Andy ; Xiong, Marley</creator><creatorcontrib>Wang, Michelle ; Bulger, Miasya ; Dai, Yue ; Noel, Kira ; Axon, Christopher ; Brandenberger, Anna ; Fay, Stephen ; Gao, Zenghao ; Gilmer, Saskia ; Hamdan, Jad ; Humane, Prateek ; Jiang, Jennifer ; Killian, Cole ; Langleben, Ian ; Li, Bonnie ; Zamora, Alejandra Martinez ; Mavromatis, Stylianos ; Njini, Sasha ; Riachi, Roland ; Rong, Carrie ; Zhen, Andy ; Xiong, Marley</creatorcontrib><description>Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armbands are limited by their fixed electrode arrangement, which can negatively affect the classification of subtle finger gestures. We propose a low-cost, 3D-printed armband with fully adjustable electrode placement for the detection of single-finger tapping motions. We trained machine learning classifiers on features extracted from eight-channel sEMG signals to detect movement from nine fingers. We obtained a classification accuracy of 71.5 ± 1.1% for a K-Nearest Neighbours (KNN) classifier using features extracted from 500 ms windows of sEMG data. Moreover, a KNN model trained on 200 ms windows from a subset of particularly clean data obtained an accuracy of 93.0 ± 0.5%. We also introduce a novel haptic feedback mechanism to improve user experience when using the armband, and propose an augmented reality typing interface as a potential application of our armband.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781728185262</identifier><identifier>EISBN: 1728185262</identifier><identifier>DOI: 10.1109/SMC42975.2020.9283117</identifier><language>eng</language><publisher>IEEE</publisher><subject>augmented reality ; Electrodes ; electromyography ; Feature extraction ; Fingers ; Haptic interfaces ; human computer interaction ; Machine learning ; Prosthetics ; User experience</subject><ispartof>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, p.3460-3465</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9283117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9283117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Michelle</creatorcontrib><creatorcontrib>Bulger, Miasya</creatorcontrib><creatorcontrib>Dai, Yue</creatorcontrib><creatorcontrib>Noel, Kira</creatorcontrib><creatorcontrib>Axon, Christopher</creatorcontrib><creatorcontrib>Brandenberger, Anna</creatorcontrib><creatorcontrib>Fay, Stephen</creatorcontrib><creatorcontrib>Gao, Zenghao</creatorcontrib><creatorcontrib>Gilmer, Saskia</creatorcontrib><creatorcontrib>Hamdan, Jad</creatorcontrib><creatorcontrib>Humane, Prateek</creatorcontrib><creatorcontrib>Jiang, Jennifer</creatorcontrib><creatorcontrib>Killian, Cole</creatorcontrib><creatorcontrib>Langleben, Ian</creatorcontrib><creatorcontrib>Li, Bonnie</creatorcontrib><creatorcontrib>Zamora, Alejandra Martinez</creatorcontrib><creatorcontrib>Mavromatis, Stylianos</creatorcontrib><creatorcontrib>Njini, Sasha</creatorcontrib><creatorcontrib>Riachi, Roland</creatorcontrib><creatorcontrib>Rong, Carrie</creatorcontrib><creatorcontrib>Zhen, Andy</creatorcontrib><creatorcontrib>Xiong, Marley</creatorcontrib><title>A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback</title><title>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armbands are limited by their fixed electrode arrangement, which can negatively affect the classification of subtle finger gestures. We propose a low-cost, 3D-printed armband with fully adjustable electrode placement for the detection of single-finger tapping motions. We trained machine learning classifiers on features extracted from eight-channel sEMG signals to detect movement from nine fingers. We obtained a classification accuracy of 71.5 ± 1.1% for a K-Nearest Neighbours (KNN) classifier using features extracted from 500 ms windows of sEMG data. Moreover, a KNN model trained on 200 ms windows from a subset of particularly clean data obtained an accuracy of 93.0 ± 0.5%. We also introduce a novel haptic feedback mechanism to improve user experience when using the armband, and propose an augmented reality typing interface as a potential application of our armband.</description><subject>augmented reality</subject><subject>Electrodes</subject><subject>electromyography</subject><subject>Feature extraction</subject><subject>Fingers</subject><subject>Haptic interfaces</subject><subject>human computer interaction</subject><subject>Machine learning</subject><subject>Prosthetics</subject><subject>User experience</subject><issn>2577-1655</issn><isbn>9781728185262</isbn><isbn>1728185262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEYAKMgWGufQIQ8gLvmd5M9rmtrhRYFCx5LNvm2Td2fkkShb69gT3MZ5jAI3VOSU0rKx491LVipZM4II3nJNKdUXaBZqTRVTFMtWcEu0YRJpTJaSHmNbmI8kD9bUD1BY4X5c_Ye_JDAPeDKHb5jMk0HuAp9YwaH2zHgeQc2hbE_jbtgjvtT9mQiOLzwww4CXo8_0MOQcN2ZGH3rrUl-HPCnT3u8NMfkLV4AuMbYr1t01ZouwuzMKdos5pt6ma3eXl7rapV5RnjKeMmJsI4TWbiyAcGcZg0BDsZp4SwBa6mkRaOUtm0hgEsniRWMydY6KvkU3f1nPQBsj8H3Jpy25z38FzARWpg</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Wang, Michelle</creator><creator>Bulger, Miasya</creator><creator>Dai, Yue</creator><creator>Noel, Kira</creator><creator>Axon, Christopher</creator><creator>Brandenberger, Anna</creator><creator>Fay, Stephen</creator><creator>Gao, Zenghao</creator><creator>Gilmer, Saskia</creator><creator>Hamdan, Jad</creator><creator>Humane, Prateek</creator><creator>Jiang, Jennifer</creator><creator>Killian, Cole</creator><creator>Langleben, Ian</creator><creator>Li, Bonnie</creator><creator>Zamora, Alejandra Martinez</creator><creator>Mavromatis, Stylianos</creator><creator>Njini, Sasha</creator><creator>Riachi, Roland</creator><creator>Rong, Carrie</creator><creator>Zhen, Andy</creator><creator>Xiong, Marley</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20201011</creationdate><title>A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback</title><author>Wang, Michelle ; Bulger, Miasya ; Dai, Yue ; Noel, Kira ; Axon, Christopher ; Brandenberger, Anna ; Fay, Stephen ; Gao, Zenghao ; Gilmer, Saskia ; Hamdan, Jad ; Humane, Prateek ; Jiang, Jennifer ; Killian, Cole ; Langleben, Ian ; Li, Bonnie ; Zamora, Alejandra Martinez ; Mavromatis, Stylianos ; Njini, Sasha ; Riachi, Roland ; Rong, Carrie ; Zhen, Andy ; Xiong, Marley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-39304cd3056d9be42d82b0e3ead84dc0ecc1516b778cf64e35d50c4225fcd153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>augmented reality</topic><topic>Electrodes</topic><topic>electromyography</topic><topic>Feature extraction</topic><topic>Fingers</topic><topic>Haptic interfaces</topic><topic>human computer interaction</topic><topic>Machine learning</topic><topic>Prosthetics</topic><topic>User experience</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Michelle</creatorcontrib><creatorcontrib>Bulger, Miasya</creatorcontrib><creatorcontrib>Dai, Yue</creatorcontrib><creatorcontrib>Noel, Kira</creatorcontrib><creatorcontrib>Axon, Christopher</creatorcontrib><creatorcontrib>Brandenberger, Anna</creatorcontrib><creatorcontrib>Fay, Stephen</creatorcontrib><creatorcontrib>Gao, Zenghao</creatorcontrib><creatorcontrib>Gilmer, Saskia</creatorcontrib><creatorcontrib>Hamdan, Jad</creatorcontrib><creatorcontrib>Humane, Prateek</creatorcontrib><creatorcontrib>Jiang, Jennifer</creatorcontrib><creatorcontrib>Killian, Cole</creatorcontrib><creatorcontrib>Langleben, Ian</creatorcontrib><creatorcontrib>Li, Bonnie</creatorcontrib><creatorcontrib>Zamora, Alejandra Martinez</creatorcontrib><creatorcontrib>Mavromatis, Stylianos</creatorcontrib><creatorcontrib>Njini, Sasha</creatorcontrib><creatorcontrib>Riachi, Roland</creatorcontrib><creatorcontrib>Rong, Carrie</creatorcontrib><creatorcontrib>Zhen, Andy</creatorcontrib><creatorcontrib>Xiong, Marley</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Michelle</au><au>Bulger, Miasya</au><au>Dai, Yue</au><au>Noel, Kira</au><au>Axon, Christopher</au><au>Brandenberger, Anna</au><au>Fay, Stephen</au><au>Gao, Zenghao</au><au>Gilmer, Saskia</au><au>Hamdan, Jad</au><au>Humane, Prateek</au><au>Jiang, Jennifer</au><au>Killian, Cole</au><au>Langleben, Ian</au><au>Li, Bonnie</au><au>Zamora, Alejandra Martinez</au><au>Mavromatis, Stylianos</au><au>Njini, Sasha</au><au>Riachi, Roland</au><au>Rong, Carrie</au><au>Zhen, Andy</au><au>Xiong, Marley</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback</atitle><btitle>2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2020-10-11</date><risdate>2020</risdate><spage>3460</spage><epage>3465</epage><pages>3460-3465</pages><eissn>2577-1655</eissn><eisbn>9781728185262</eisbn><eisbn>1728185262</eisbn><abstract>Recent work in prosthetic devices suggests that forearm surface electromyography (sEMG) is a promising technology for human-computer interactions. Specifically, a system able to detect individual finger movement can have many clinical and nonclinical applications. Popular consumer-grade sEMG armbands are limited by their fixed electrode arrangement, which can negatively affect the classification of subtle finger gestures. We propose a low-cost, 3D-printed armband with fully adjustable electrode placement for the detection of single-finger tapping motions. We trained machine learning classifiers on features extracted from eight-channel sEMG signals to detect movement from nine fingers. We obtained a classification accuracy of 71.5 ± 1.1% for a K-Nearest Neighbours (KNN) classifier using features extracted from 500 ms windows of sEMG data. Moreover, a KNN model trained on 200 ms windows from a subset of particularly clean data obtained an accuracy of 93.0 ± 0.5%. We also introduce a novel haptic feedback mechanism to improve user experience when using the armband, and propose an augmented reality typing interface as a potential application of our armband.</abstract><pub>IEEE</pub><doi>10.1109/SMC42975.2020.9283117</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2577-1655 |
ispartof | 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, p.3460-3465 |
issn | 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_9283117 |
source | IEEE Xplore All Conference Series |
subjects | augmented reality Electrodes electromyography Feature extraction Fingers Haptic interfaces human computer interaction Machine learning Prosthetics User experience |
title | A 3D-Printed, Adjustable Armband for Electromyography-Based Finger Movement Classification With Haptic Feedback |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%203D-Printed,%20Adjustable%20Armband%20for%20Electromyography-Based%20Finger%20Movement%20Classification%20With%20Haptic%20Feedback&rft.btitle=2020%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Wang,%20Michelle&rft.date=2020-10-11&rft.spage=3460&rft.epage=3465&rft.pages=3460-3465&rft.eissn=2577-1655&rft_id=info:doi/10.1109/SMC42975.2020.9283117&rft.eisbn=9781728185262&rft.eisbn_list=1728185262&rft_dat=%3Cieee_CHZPO%3E9283117%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-39304cd3056d9be42d82b0e3ead84dc0ecc1516b778cf64e35d50c4225fcd153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9283117&rfr_iscdi=true |