Loading…
Emotion Dependent Facial Animation from Affective Speech
In human-to-computer interaction, facial animation in synchrony with affective speech can deliver more naturalistic conversational agents. In this paper, we present a two-stage deep learning approach for affective speech driven facial shape animation. In the first stage, we classify affective speech...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sadiq, Rizwan Asadiabadi, Sasan Erzin, Engin |
description | In human-to-computer interaction, facial animation in synchrony with affective speech can deliver more naturalistic conversational agents. In this paper, we present a two-stage deep learning approach for affective speech driven facial shape animation. In the first stage, we classify affective speech into seven emotion categories. In the second stage, we train separate deep estimators within each emotion category to synthesize facial shape from the affective speech. Objective and subjective evaluations are performed over the SAVEE dataset. The proposed emotion dependent facial shape model performs better in terms of the Mean Squared Error (MSE) loss and in generating the landmark animations, as compared to training a universal model regardless of the emotion. |
doi_str_mv | 10.1109/MMSP48831.2020.9287086 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9287086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9287086</ieee_id><sourcerecordid>9287086</sourcerecordid><originalsourceid>FETCH-LOGICAL-i251t-86abc0c6628f564983c508180c345c5e992905f3afa180ee7ba93f2ff692c50f3</originalsourceid><addsrcrecordid>eNotT11LwzAUjYLgmP0FgvQPtN7cNMnNY5mbChsK0-eRxRuMrB-0RfDfW3RPB845nA8h7iSUUoK73-32rxWRkiUCQumQLJC5EJmzJC2SdApBX4oFVlYVyiBdi2wcvwBAGqwIYSFo3XRT6tr8gXtuP7id8o0PyZ_yuk2N_5Pi0DV5HSOHKX1zvu-Zw-eNuIr-NHJ2xqV436zfVk_F9uXxeVVvi4RaTgUZfwwQzFwetakcqaCBJEFQlQ6anUMHOiof_Uwy26N3KmKMxuHsjGopbv9zEzMf-mEeNfwczl_VL5f7R40</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Emotion Dependent Facial Animation from Affective Speech</title><source>IEEE Xplore All Conference Series</source><creator>Sadiq, Rizwan ; Asadiabadi, Sasan ; Erzin, Engin</creator><creatorcontrib>Sadiq, Rizwan ; Asadiabadi, Sasan ; Erzin, Engin</creatorcontrib><description>In human-to-computer interaction, facial animation in synchrony with affective speech can deliver more naturalistic conversational agents. In this paper, we present a two-stage deep learning approach for affective speech driven facial shape animation. In the first stage, we classify affective speech into seven emotion categories. In the second stage, we train separate deep estimators within each emotion category to synthesize facial shape from the affective speech. Objective and subjective evaluations are performed over the SAVEE dataset. The proposed emotion dependent facial shape model performs better in terms of the Mean Squared Error (MSE) loss and in generating the landmark animations, as compared to training a universal model regardless of the emotion.</description><identifier>EISSN: 2473-3628</identifier><identifier>EISBN: 9781728193205</identifier><identifier>EISBN: 1728193206</identifier><identifier>DOI: 10.1109/MMSP48831.2020.9287086</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), 2020, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9287086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9287086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sadiq, Rizwan</creatorcontrib><creatorcontrib>Asadiabadi, Sasan</creatorcontrib><creatorcontrib>Erzin, Engin</creatorcontrib><title>Emotion Dependent Facial Animation from Affective Speech</title><title>2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)</title><addtitle>MMSP</addtitle><description>In human-to-computer interaction, facial animation in synchrony with affective speech can deliver more naturalistic conversational agents. In this paper, we present a two-stage deep learning approach for affective speech driven facial shape animation. In the first stage, we classify affective speech into seven emotion categories. In the second stage, we train separate deep estimators within each emotion category to synthesize facial shape from the affective speech. Objective and subjective evaluations are performed over the SAVEE dataset. The proposed emotion dependent facial shape model performs better in terms of the Mean Squared Error (MSE) loss and in generating the landmark animations, as compared to training a universal model regardless of the emotion.</description><issn>2473-3628</issn><isbn>9781728193205</isbn><isbn>1728193206</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT11LwzAUjYLgmP0FgvQPtN7cNMnNY5mbChsK0-eRxRuMrB-0RfDfW3RPB845nA8h7iSUUoK73-32rxWRkiUCQumQLJC5EJmzJC2SdApBX4oFVlYVyiBdi2wcvwBAGqwIYSFo3XRT6tr8gXtuP7id8o0PyZ_yuk2N_5Pi0DV5HSOHKX1zvu-Zw-eNuIr-NHJ2xqV436zfVk_F9uXxeVVvi4RaTgUZfwwQzFwetakcqaCBJEFQlQ6anUMHOiof_Uwy26N3KmKMxuHsjGopbv9zEzMf-mEeNfwczl_VL5f7R40</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Sadiq, Rizwan</creator><creator>Asadiabadi, Sasan</creator><creator>Erzin, Engin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200921</creationdate><title>Emotion Dependent Facial Animation from Affective Speech</title><author>Sadiq, Rizwan ; Asadiabadi, Sasan ; Erzin, Engin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i251t-86abc0c6628f564983c508180c345c5e992905f3afa180ee7ba93f2ff692c50f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sadiq, Rizwan</creatorcontrib><creatorcontrib>Asadiabadi, Sasan</creatorcontrib><creatorcontrib>Erzin, Engin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadiq, Rizwan</au><au>Asadiabadi, Sasan</au><au>Erzin, Engin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Emotion Dependent Facial Animation from Affective Speech</atitle><btitle>2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)</btitle><stitle>MMSP</stitle><date>2020-09-21</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2473-3628</eissn><eisbn>9781728193205</eisbn><eisbn>1728193206</eisbn><abstract>In human-to-computer interaction, facial animation in synchrony with affective speech can deliver more naturalistic conversational agents. In this paper, we present a two-stage deep learning approach for affective speech driven facial shape animation. In the first stage, we classify affective speech into seven emotion categories. In the second stage, we train separate deep estimators within each emotion category to synthesize facial shape from the affective speech. Objective and subjective evaluations are performed over the SAVEE dataset. The proposed emotion dependent facial shape model performs better in terms of the Mean Squared Error (MSE) loss and in generating the landmark animations, as compared to training a universal model regardless of the emotion.</abstract><pub>IEEE</pub><doi>10.1109/MMSP48831.2020.9287086</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2473-3628 |
ispartof | 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), 2020, p.1-6 |
issn | 2473-3628 |
language | eng |
recordid | cdi_ieee_primary_9287086 |
source | IEEE Xplore All Conference Series |
title | Emotion Dependent Facial Animation from Affective Speech |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Emotion%20Dependent%20Facial%20Animation%20from%20Affective%20Speech&rft.btitle=2020%20IEEE%2022nd%20International%20Workshop%20on%20Multimedia%20Signal%20Processing%20(MMSP)&rft.au=Sadiq,%20Rizwan&rft.date=2020-09-21&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2473-3628&rft_id=info:doi/10.1109/MMSP48831.2020.9287086&rft.eisbn=9781728193205&rft.eisbn_list=1728193206&rft_dat=%3Cieee_CHZPO%3E9287086%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i251t-86abc0c6628f564983c508180c345c5e992905f3afa180ee7ba93f2ff692c50f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9287086&rfr_iscdi=true |