Loading…

Using Commonsense Knowledge and Text Mining for Implicit Requirements Localization

This paper addresses identification of implicit requirements (IMRs) in software requirements specifications (SRS). IMRs, as opposed to explicit requirements, are not specified by users but are more subtle. It has been noticed that IMRs are crucial to the success of software development. In this pape...

Full description

Saved in:
Bibliographic Details
Main Authors: Onyeka, Emebo, Varde, Aparna S., Anu, Vaibhav, Tandon, Niket, Daramola, Olawande
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 940
container_issue
container_start_page 935
container_title
container_volume
creator Onyeka, Emebo
Varde, Aparna S.
Anu, Vaibhav
Tandon, Niket
Daramola, Olawande
description This paper addresses identification of implicit requirements (IMRs) in software requirements specifications (SRS). IMRs, as opposed to explicit requirements, are not specified by users but are more subtle. It has been noticed that IMRs are crucial to the success of software development. In this paper, we demonstrate a software tool called COTIR developed by us as a system that integrates Commonsense knowledge, Ontology and Text mining for early identification of Implicit Requirements. This relieves human software engineers from the tedious task of manually identifying IMRs in huge SRS documents. Our evaluation reveals that COTIR outperforms existing IMR tools. This demo paper would be useful to Software Engineers since it deals with automation in the requirements analysis phase, thus contributing to Requirements Engineering. It would interest AI scientists as it entails multi-disciplinary work encompassing text mining, ontology and commonsense knowledge. It makes a broader impact on Smart Cities, because automated identification of IMRs would offer inputs to Smart City Tools, where requirements may often be implicit given that Smart Cities are an emerging and growing paradigm.
doi_str_mv 10.1109/ICTAI50040.2020.00146
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9288192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9288192</ieee_id><sourcerecordid>9288192</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-3a8c79abf4f4a1c73bbef3f96a1e243dc589f623c6f98ffa203128c3c6c2144d3</originalsourceid><addsrcrecordid>eNotj21LwzAUhaMgOOd-gQj5A503N2mbfBzFl-JEGNvnkaY3I9Kms6348uvtUDjwcODhwGHsVsBSCDB3ZbFdlSmAgiUCwhJAqOyMLUyuRY5aGEStztkMZZ4mIEx-ya6G4Q0mN0U5Y5vdEOKBF13bdnGgKfw5dp8N1QfiNtZ8S18jfwnxZPmu52V7bIILI9_Q-0foqaU4DnzdOduEHzuGLl6zC2-bgRb_nLPdw_22eErWr49lsVonAVMYE2m1y42tvPLKCpfLqiIvvcmsIFSydqk2PkPpMm-09xZBCtRu6g6FUrWcs5u_3UBE-2MfWtt_7w3q02v5C3ewUdU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Commonsense Knowledge and Text Mining for Implicit Requirements Localization</title><source>IEEE Xplore All Conference Series</source><creator>Onyeka, Emebo ; Varde, Aparna S. ; Anu, Vaibhav ; Tandon, Niket ; Daramola, Olawande</creator><creatorcontrib>Onyeka, Emebo ; Varde, Aparna S. ; Anu, Vaibhav ; Tandon, Niket ; Daramola, Olawande</creatorcontrib><description>This paper addresses identification of implicit requirements (IMRs) in software requirements specifications (SRS). IMRs, as opposed to explicit requirements, are not specified by users but are more subtle. It has been noticed that IMRs are crucial to the success of software development. In this paper, we demonstrate a software tool called COTIR developed by us as a system that integrates Commonsense knowledge, Ontology and Text mining for early identification of Implicit Requirements. This relieves human software engineers from the tedious task of manually identifying IMRs in huge SRS documents. Our evaluation reveals that COTIR outperforms existing IMR tools. This demo paper would be useful to Software Engineers since it deals with automation in the requirements analysis phase, thus contributing to Requirements Engineering. It would interest AI scientists as it entails multi-disciplinary work encompassing text mining, ontology and commonsense knowledge. It makes a broader impact on Smart Cities, because automated identification of IMRs would offer inputs to Smart City Tools, where requirements may often be implicit given that Smart Cities are an emerging and growing paradigm.</description><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 9781728192284</identifier><identifier>EISBN: 1728192285</identifier><identifier>DOI: 10.1109/ICTAI50040.2020.00146</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>AI in Smart Cities ; Commonsense Knowledge ; Implicit Requirements ; Ontologies ; Ontology ; Requirements engineering ; Smart cities ; Software Demo ; Software tools ; Task analysis ; Text mining</subject><ispartof>2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020, p.935-940</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9288192$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9288192$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Onyeka, Emebo</creatorcontrib><creatorcontrib>Varde, Aparna S.</creatorcontrib><creatorcontrib>Anu, Vaibhav</creatorcontrib><creatorcontrib>Tandon, Niket</creatorcontrib><creatorcontrib>Daramola, Olawande</creatorcontrib><title>Using Commonsense Knowledge and Text Mining for Implicit Requirements Localization</title><title>2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)</title><addtitle>ICTAI</addtitle><description>This paper addresses identification of implicit requirements (IMRs) in software requirements specifications (SRS). IMRs, as opposed to explicit requirements, are not specified by users but are more subtle. It has been noticed that IMRs are crucial to the success of software development. In this paper, we demonstrate a software tool called COTIR developed by us as a system that integrates Commonsense knowledge, Ontology and Text mining for early identification of Implicit Requirements. This relieves human software engineers from the tedious task of manually identifying IMRs in huge SRS documents. Our evaluation reveals that COTIR outperforms existing IMR tools. This demo paper would be useful to Software Engineers since it deals with automation in the requirements analysis phase, thus contributing to Requirements Engineering. It would interest AI scientists as it entails multi-disciplinary work encompassing text mining, ontology and commonsense knowledge. It makes a broader impact on Smart Cities, because automated identification of IMRs would offer inputs to Smart City Tools, where requirements may often be implicit given that Smart Cities are an emerging and growing paradigm.</description><subject>AI in Smart Cities</subject><subject>Commonsense Knowledge</subject><subject>Implicit Requirements</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Requirements engineering</subject><subject>Smart cities</subject><subject>Software Demo</subject><subject>Software tools</subject><subject>Task analysis</subject><subject>Text mining</subject><issn>2375-0197</issn><isbn>9781728192284</isbn><isbn>1728192285</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj21LwzAUhaMgOOd-gQj5A503N2mbfBzFl-JEGNvnkaY3I9Kms6348uvtUDjwcODhwGHsVsBSCDB3ZbFdlSmAgiUCwhJAqOyMLUyuRY5aGEStztkMZZ4mIEx-ya6G4Q0mN0U5Y5vdEOKBF13bdnGgKfw5dp8N1QfiNtZ8S18jfwnxZPmu52V7bIILI9_Q-0foqaU4DnzdOduEHzuGLl6zC2-bgRb_nLPdw_22eErWr49lsVonAVMYE2m1y42tvPLKCpfLqiIvvcmsIFSydqk2PkPpMm-09xZBCtRu6g6FUrWcs5u_3UBE-2MfWtt_7w3q02v5C3ewUdU</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Onyeka, Emebo</creator><creator>Varde, Aparna S.</creator><creator>Anu, Vaibhav</creator><creator>Tandon, Niket</creator><creator>Daramola, Olawande</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20201101</creationdate><title>Using Commonsense Knowledge and Text Mining for Implicit Requirements Localization</title><author>Onyeka, Emebo ; Varde, Aparna S. ; Anu, Vaibhav ; Tandon, Niket ; Daramola, Olawande</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-3a8c79abf4f4a1c73bbef3f96a1e243dc589f623c6f98ffa203128c3c6c2144d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AI in Smart Cities</topic><topic>Commonsense Knowledge</topic><topic>Implicit Requirements</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Requirements engineering</topic><topic>Smart cities</topic><topic>Software Demo</topic><topic>Software tools</topic><topic>Task analysis</topic><topic>Text mining</topic><toplevel>online_resources</toplevel><creatorcontrib>Onyeka, Emebo</creatorcontrib><creatorcontrib>Varde, Aparna S.</creatorcontrib><creatorcontrib>Anu, Vaibhav</creatorcontrib><creatorcontrib>Tandon, Niket</creatorcontrib><creatorcontrib>Daramola, Olawande</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Onyeka, Emebo</au><au>Varde, Aparna S.</au><au>Anu, Vaibhav</au><au>Tandon, Niket</au><au>Daramola, Olawande</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Commonsense Knowledge and Text Mining for Implicit Requirements Localization</atitle><btitle>2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)</btitle><stitle>ICTAI</stitle><date>2020-11-01</date><risdate>2020</risdate><spage>935</spage><epage>940</epage><pages>935-940</pages><eissn>2375-0197</eissn><eisbn>9781728192284</eisbn><eisbn>1728192285</eisbn><coden>IEEPAD</coden><abstract>This paper addresses identification of implicit requirements (IMRs) in software requirements specifications (SRS). IMRs, as opposed to explicit requirements, are not specified by users but are more subtle. It has been noticed that IMRs are crucial to the success of software development. In this paper, we demonstrate a software tool called COTIR developed by us as a system that integrates Commonsense knowledge, Ontology and Text mining for early identification of Implicit Requirements. This relieves human software engineers from the tedious task of manually identifying IMRs in huge SRS documents. Our evaluation reveals that COTIR outperforms existing IMR tools. This demo paper would be useful to Software Engineers since it deals with automation in the requirements analysis phase, thus contributing to Requirements Engineering. It would interest AI scientists as it entails multi-disciplinary work encompassing text mining, ontology and commonsense knowledge. It makes a broader impact on Smart Cities, because automated identification of IMRs would offer inputs to Smart City Tools, where requirements may often be implicit given that Smart Cities are an emerging and growing paradigm.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI50040.2020.00146</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-0197
ispartof 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020, p.935-940
issn 2375-0197
language eng
recordid cdi_ieee_primary_9288192
source IEEE Xplore All Conference Series
subjects AI in Smart Cities
Commonsense Knowledge
Implicit Requirements
Ontologies
Ontology
Requirements engineering
Smart cities
Software Demo
Software tools
Task analysis
Text mining
title Using Commonsense Knowledge and Text Mining for Implicit Requirements Localization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Commonsense%20Knowledge%20and%20Text%20Mining%20for%20Implicit%20Requirements%20Localization&rft.btitle=2020%20IEEE%2032nd%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence%20(ICTAI)&rft.au=Onyeka,%20Emebo&rft.date=2020-11-01&rft.spage=935&rft.epage=940&rft.pages=935-940&rft.eissn=2375-0197&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICTAI50040.2020.00146&rft.eisbn=9781728192284&rft.eisbn_list=1728192285&rft_dat=%3Cieee_CHZPO%3E9288192%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i250t-3a8c79abf4f4a1c73bbef3f96a1e243dc589f623c6f98ffa203128c3c6c2144d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9288192&rfr_iscdi=true