Loading…

Partial Discharges Identification and Localisation within Transformer Windings

This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency curre...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dielectrics and electrical insulation 2020-12, Vol.27 (6), p.2095-2103
Main Authors: Ali, N. H. Nik, Ariffin, A. Mohd, Rapisarda, P., Lewin, P. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873
cites cdi_FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873
container_end_page 2103
container_issue 6
container_start_page 2095
container_title IEEE transactions on dielectrics and electrical insulation
container_volume 27
creator Ali, N. H. Nik
Ariffin, A. Mohd
Rapisarda, P.
Lewin, P. L.
description This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency current transformers (RFCTs), measurement data are obtained by positioning the RFCTs at the neutral-to-earth point of the winding and the bushing tap-point-to-earth. Mathematical morphology energy analysis using ordering points to identify clustering structure and signal cross correlation methods are utilized to extract information from the raw measurement data. Assessment of the relative performance of the analytical methods are examined and characterized in this study. The proposed approach allows automatic separation of PD data by source and localization of source site within the winding.
doi_str_mv 10.1109/TDEI.2020.008706
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9293231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9293231</ieee_id><sourcerecordid>2470650829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpuA69Q7j8xjKX1ooaiLgMthMpm0U9JJnUkR_70pEVf3cjnnXM6H0D2GGcagnsrFcj0jQGAGIAXwCzTBRSFzhmlxOewgIFdSyGt0k9IeALOC8Al6-zCx96bNFj7ZnYlbl7J17ULvG29N77uQmVBnm86a1qfx8O37nQ9ZGU1ITRcPLmafPtQ-bNMtumpMm9zd35yicrUs56_55v1lPX_e5JYo3OfKMQpcMGatJJbWllNqKyylcxUjslFCUE4axRg3pJYKhBBcSloxYZkUdIoex9hj7L5OLvV6351iGD5qwobyBUiiBhWMKhu7lKJr9DH6g4k_GoM-Q9NnaPoMTY_QBsvDaPHOuX-5GsIIxfQXD6JnfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470650829</pqid></control><display><type>article</type><title>Partial Discharges Identification and Localisation within Transformer Windings</title><source>IEEE Xplore (Online service)</source><creator>Ali, N. H. Nik ; Ariffin, A. Mohd ; Rapisarda, P. ; Lewin, P. L.</creator><creatorcontrib>Ali, N. H. Nik ; Ariffin, A. Mohd ; Rapisarda, P. ; Lewin, P. L.</creatorcontrib><description>This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency current transformers (RFCTs), measurement data are obtained by positioning the RFCTs at the neutral-to-earth point of the winding and the bushing tap-point-to-earth. Mathematical morphology energy analysis using ordering points to identify clustering structure and signal cross correlation methods are utilized to extract information from the raw measurement data. Assessment of the relative performance of the analytical methods are examined and characterized in this study. The proposed approach allows automatic separation of PD data by source and localization of source site within the winding.</description><identifier>ISSN: 1070-9878</identifier><identifier>EISSN: 1558-4135</identifier><identifier>DOI: 10.1109/TDEI.2020.008706</identifier><identifier>CODEN: ITDIES</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering algorithms ; Coils (windings) ; Condition monitoring ; Cross correlation ; Current measurement ; Insulators ; Localization ; Mathematical morphology ; partial discharge (PD) ; Partial discharges ; signal processing ; transformer windings ; Transformers ; Waveforms ; Wideband ; Winding ; Windings</subject><ispartof>IEEE transactions on dielectrics and electrical insulation, 2020-12, Vol.27 (6), p.2095-2103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873</citedby><cites>FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9293231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Ali, N. H. Nik</creatorcontrib><creatorcontrib>Ariffin, A. Mohd</creatorcontrib><creatorcontrib>Rapisarda, P.</creatorcontrib><creatorcontrib>Lewin, P. L.</creatorcontrib><title>Partial Discharges Identification and Localisation within Transformer Windings</title><title>IEEE transactions on dielectrics and electrical insulation</title><addtitle>T-DEI</addtitle><description>This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency current transformers (RFCTs), measurement data are obtained by positioning the RFCTs at the neutral-to-earth point of the winding and the bushing tap-point-to-earth. Mathematical morphology energy analysis using ordering points to identify clustering structure and signal cross correlation methods are utilized to extract information from the raw measurement data. Assessment of the relative performance of the analytical methods are examined and characterized in this study. The proposed approach allows automatic separation of PD data by source and localization of source site within the winding.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Coils (windings)</subject><subject>Condition monitoring</subject><subject>Cross correlation</subject><subject>Current measurement</subject><subject>Insulators</subject><subject>Localization</subject><subject>Mathematical morphology</subject><subject>partial discharge (PD)</subject><subject>Partial discharges</subject><subject>signal processing</subject><subject>transformer windings</subject><subject>Transformers</subject><subject>Waveforms</subject><subject>Wideband</subject><subject>Winding</subject><subject>Windings</subject><issn>1070-9878</issn><issn>1558-4135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb3gpuA69Q7j8xjKX1ooaiLgMthMpm0U9JJnUkR_70pEVf3cjnnXM6H0D2GGcagnsrFcj0jQGAGIAXwCzTBRSFzhmlxOewgIFdSyGt0k9IeALOC8Al6-zCx96bNFj7ZnYlbl7J17ULvG29N77uQmVBnm86a1qfx8O37nQ9ZGU1ITRcPLmafPtQ-bNMtumpMm9zd35yicrUs56_55v1lPX_e5JYo3OfKMQpcMGatJJbWllNqKyylcxUjslFCUE4axRg3pJYKhBBcSloxYZkUdIoex9hj7L5OLvV6351iGD5qwobyBUiiBhWMKhu7lKJr9DH6g4k_GoM-Q9NnaPoMTY_QBsvDaPHOuX-5GsIIxfQXD6JnfQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Ali, N. H. Nik</creator><creator>Ariffin, A. Mohd</creator><creator>Rapisarda, P.</creator><creator>Lewin, P. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202012</creationdate><title>Partial Discharges Identification and Localisation within Transformer Windings</title><author>Ali, N. H. Nik ; Ariffin, A. Mohd ; Rapisarda, P. ; Lewin, P. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Coils (windings)</topic><topic>Condition monitoring</topic><topic>Cross correlation</topic><topic>Current measurement</topic><topic>Insulators</topic><topic>Localization</topic><topic>Mathematical morphology</topic><topic>partial discharge (PD)</topic><topic>Partial discharges</topic><topic>signal processing</topic><topic>transformer windings</topic><topic>Transformers</topic><topic>Waveforms</topic><topic>Wideband</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, N. H. Nik</creatorcontrib><creatorcontrib>Ariffin, A. Mohd</creatorcontrib><creatorcontrib>Rapisarda, P.</creatorcontrib><creatorcontrib>Lewin, P. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, N. H. Nik</au><au>Ariffin, A. Mohd</au><au>Rapisarda, P.</au><au>Lewin, P. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Discharges Identification and Localisation within Transformer Windings</atitle><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle><stitle>T-DEI</stitle><date>2020-12</date><risdate>2020</risdate><volume>27</volume><issue>6</issue><spage>2095</spage><epage>2103</epage><pages>2095-2103</pages><issn>1070-9878</issn><eissn>1558-4135</eissn><coden>ITDIES</coden><abstract>This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency current transformers (RFCTs), measurement data are obtained by positioning the RFCTs at the neutral-to-earth point of the winding and the bushing tap-point-to-earth. Mathematical morphology energy analysis using ordering points to identify clustering structure and signal cross correlation methods are utilized to extract information from the raw measurement data. Assessment of the relative performance of the analytical methods are examined and characterized in this study. The proposed approach allows automatic separation of PD data by source and localization of source site within the winding.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDEI.2020.008706</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-9878
ispartof IEEE transactions on dielectrics and electrical insulation, 2020-12, Vol.27 (6), p.2095-2103
issn 1070-9878
1558-4135
language eng
recordid cdi_ieee_primary_9293231
source IEEE Xplore (Online service)
subjects Clustering
Clustering algorithms
Coils (windings)
Condition monitoring
Cross correlation
Current measurement
Insulators
Localization
Mathematical morphology
partial discharge (PD)
Partial discharges
signal processing
transformer windings
Transformers
Waveforms
Wideband
Winding
Windings
title Partial Discharges Identification and Localisation within Transformer Windings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Discharges%20Identification%20and%20Localisation%20within%20Transformer%20Windings&rft.jtitle=IEEE%20transactions%20on%20dielectrics%20and%20electrical%20insulation&rft.au=Ali,%20N.%20H.%20Nik&rft.date=2020-12&rft.volume=27&rft.issue=6&rft.spage=2095&rft.epage=2103&rft.pages=2095-2103&rft.issn=1070-9878&rft.eissn=1558-4135&rft.coden=ITDIES&rft_id=info:doi/10.1109/TDEI.2020.008706&rft_dat=%3Cproquest_ieee_%3E2470650829%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470650829&rft_id=info:pmid/&rft_ieee_id=9293231&rfr_iscdi=true