Loading…
Partial Discharges Identification and Localisation within Transformer Windings
This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency curre...
Saved in:
Published in: | IEEE transactions on dielectrics and electrical insulation 2020-12, Vol.27 (6), p.2095-2103 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873 |
container_end_page | 2103 |
container_issue | 6 |
container_start_page | 2095 |
container_title | IEEE transactions on dielectrics and electrical insulation |
container_volume | 27 |
creator | Ali, N. H. Nik Ariffin, A. Mohd Rapisarda, P. Lewin, P. L. |
description | This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency current transformers (RFCTs), measurement data are obtained by positioning the RFCTs at the neutral-to-earth point of the winding and the bushing tap-point-to-earth. Mathematical morphology energy analysis using ordering points to identify clustering structure and signal cross correlation methods are utilized to extract information from the raw measurement data. Assessment of the relative performance of the analytical methods are examined and characterized in this study. The proposed approach allows automatic separation of PD data by source and localization of source site within the winding. |
doi_str_mv | 10.1109/TDEI.2020.008706 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9293231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9293231</ieee_id><sourcerecordid>2470650829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpuA69Q7j8xjKX1ooaiLgMthMpm0U9JJnUkR_70pEVf3cjnnXM6H0D2GGcagnsrFcj0jQGAGIAXwCzTBRSFzhmlxOewgIFdSyGt0k9IeALOC8Al6-zCx96bNFj7ZnYlbl7J17ULvG29N77uQmVBnm86a1qfx8O37nQ9ZGU1ITRcPLmafPtQ-bNMtumpMm9zd35yicrUs56_55v1lPX_e5JYo3OfKMQpcMGatJJbWllNqKyylcxUjslFCUE4axRg3pJYKhBBcSloxYZkUdIoex9hj7L5OLvV6351iGD5qwobyBUiiBhWMKhu7lKJr9DH6g4k_GoM-Q9NnaPoMTY_QBsvDaPHOuX-5GsIIxfQXD6JnfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470650829</pqid></control><display><type>article</type><title>Partial Discharges Identification and Localisation within Transformer Windings</title><source>IEEE Xplore (Online service)</source><creator>Ali, N. H. Nik ; Ariffin, A. Mohd ; Rapisarda, P. ; Lewin, P. L.</creator><creatorcontrib>Ali, N. H. Nik ; Ariffin, A. Mohd ; Rapisarda, P. ; Lewin, P. L.</creatorcontrib><description>This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency current transformers (RFCTs), measurement data are obtained by positioning the RFCTs at the neutral-to-earth point of the winding and the bushing tap-point-to-earth. Mathematical morphology energy analysis using ordering points to identify clustering structure and signal cross correlation methods are utilized to extract information from the raw measurement data. Assessment of the relative performance of the analytical methods are examined and characterized in this study. The proposed approach allows automatic separation of PD data by source and localization of source site within the winding.</description><identifier>ISSN: 1070-9878</identifier><identifier>EISSN: 1558-4135</identifier><identifier>DOI: 10.1109/TDEI.2020.008706</identifier><identifier>CODEN: ITDIES</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering algorithms ; Coils (windings) ; Condition monitoring ; Cross correlation ; Current measurement ; Insulators ; Localization ; Mathematical morphology ; partial discharge (PD) ; Partial discharges ; signal processing ; transformer windings ; Transformers ; Waveforms ; Wideband ; Winding ; Windings</subject><ispartof>IEEE transactions on dielectrics and electrical insulation, 2020-12, Vol.27 (6), p.2095-2103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873</citedby><cites>FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9293231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Ali, N. H. Nik</creatorcontrib><creatorcontrib>Ariffin, A. Mohd</creatorcontrib><creatorcontrib>Rapisarda, P.</creatorcontrib><creatorcontrib>Lewin, P. L.</creatorcontrib><title>Partial Discharges Identification and Localisation within Transformer Windings</title><title>IEEE transactions on dielectrics and electrical insulation</title><addtitle>T-DEI</addtitle><description>This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency current transformers (RFCTs), measurement data are obtained by positioning the RFCTs at the neutral-to-earth point of the winding and the bushing tap-point-to-earth. Mathematical morphology energy analysis using ordering points to identify clustering structure and signal cross correlation methods are utilized to extract information from the raw measurement data. Assessment of the relative performance of the analytical methods are examined and characterized in this study. The proposed approach allows automatic separation of PD data by source and localization of source site within the winding.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Coils (windings)</subject><subject>Condition monitoring</subject><subject>Cross correlation</subject><subject>Current measurement</subject><subject>Insulators</subject><subject>Localization</subject><subject>Mathematical morphology</subject><subject>partial discharge (PD)</subject><subject>Partial discharges</subject><subject>signal processing</subject><subject>transformer windings</subject><subject>Transformers</subject><subject>Waveforms</subject><subject>Wideband</subject><subject>Winding</subject><subject>Windings</subject><issn>1070-9878</issn><issn>1558-4135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb3gpuA69Q7j8xjKX1ooaiLgMthMpm0U9JJnUkR_70pEVf3cjnnXM6H0D2GGcagnsrFcj0jQGAGIAXwCzTBRSFzhmlxOewgIFdSyGt0k9IeALOC8Al6-zCx96bNFj7ZnYlbl7J17ULvG29N77uQmVBnm86a1qfx8O37nQ9ZGU1ITRcPLmafPtQ-bNMtumpMm9zd35yicrUs56_55v1lPX_e5JYo3OfKMQpcMGatJJbWllNqKyylcxUjslFCUE4axRg3pJYKhBBcSloxYZkUdIoex9hj7L5OLvV6351iGD5qwobyBUiiBhWMKhu7lKJr9DH6g4k_GoM-Q9NnaPoMTY_QBsvDaPHOuX-5GsIIxfQXD6JnfQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Ali, N. H. Nik</creator><creator>Ariffin, A. Mohd</creator><creator>Rapisarda, P.</creator><creator>Lewin, P. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202012</creationdate><title>Partial Discharges Identification and Localisation within Transformer Windings</title><author>Ali, N. H. Nik ; Ariffin, A. Mohd ; Rapisarda, P. ; Lewin, P. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Coils (windings)</topic><topic>Condition monitoring</topic><topic>Cross correlation</topic><topic>Current measurement</topic><topic>Insulators</topic><topic>Localization</topic><topic>Mathematical morphology</topic><topic>partial discharge (PD)</topic><topic>Partial discharges</topic><topic>signal processing</topic><topic>transformer windings</topic><topic>Transformers</topic><topic>Waveforms</topic><topic>Wideband</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, N. H. Nik</creatorcontrib><creatorcontrib>Ariffin, A. Mohd</creatorcontrib><creatorcontrib>Rapisarda, P.</creatorcontrib><creatorcontrib>Lewin, P. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, N. H. Nik</au><au>Ariffin, A. Mohd</au><au>Rapisarda, P.</au><au>Lewin, P. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Discharges Identification and Localisation within Transformer Windings</atitle><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle><stitle>T-DEI</stitle><date>2020-12</date><risdate>2020</risdate><volume>27</volume><issue>6</issue><spage>2095</spage><epage>2103</epage><pages>2095-2103</pages><issn>1070-9878</issn><eissn>1558-4135</eissn><coden>ITDIES</coden><abstract>This study proposes a technique that is based on the hypothesis that distinct PD sources have unique PD waveform characteristics at the point of measurement. Two different forms of PD pulses are injected into a model transformer winding at different points and by using wideband radio frequency current transformers (RFCTs), measurement data are obtained by positioning the RFCTs at the neutral-to-earth point of the winding and the bushing tap-point-to-earth. Mathematical morphology energy analysis using ordering points to identify clustering structure and signal cross correlation methods are utilized to extract information from the raw measurement data. Assessment of the relative performance of the analytical methods are examined and characterized in this study. The proposed approach allows automatic separation of PD data by source and localization of source site within the winding.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDEI.2020.008706</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9878 |
ispartof | IEEE transactions on dielectrics and electrical insulation, 2020-12, Vol.27 (6), p.2095-2103 |
issn | 1070-9878 1558-4135 |
language | eng |
recordid | cdi_ieee_primary_9293231 |
source | IEEE Xplore (Online service) |
subjects | Clustering Clustering algorithms Coils (windings) Condition monitoring Cross correlation Current measurement Insulators Localization Mathematical morphology partial discharge (PD) Partial discharges signal processing transformer windings Transformers Waveforms Wideband Winding Windings |
title | Partial Discharges Identification and Localisation within Transformer Windings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Discharges%20Identification%20and%20Localisation%20within%20Transformer%20Windings&rft.jtitle=IEEE%20transactions%20on%20dielectrics%20and%20electrical%20insulation&rft.au=Ali,%20N.%20H.%20Nik&rft.date=2020-12&rft.volume=27&rft.issue=6&rft.spage=2095&rft.epage=2103&rft.pages=2095-2103&rft.issn=1070-9878&rft.eissn=1558-4135&rft.coden=ITDIES&rft_id=info:doi/10.1109/TDEI.2020.008706&rft_dat=%3Cproquest_ieee_%3E2470650829%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-9e4306744cc82c3dc633cb188eeb428f977362f9446a2d8907776883b47c4873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470650829&rft_id=info:pmid/&rft_ieee_id=9293231&rfr_iscdi=true |