Loading…

Adaptive Transmit Waveform Design Using Multitone Sinusoidal Frequency Modulation

This article presents an adaptive waveform design method using multitone sinusoidal frequency modulation (MTSFM). The MTSFM waveform's modulation function is represented as a finite Fourier series expansion. The Fourier coefficients are utilized as a discrete set of design parameters. These des...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2021-04, Vol.57 (2), p.1274-1287
Main Author: Hague, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents an adaptive waveform design method using multitone sinusoidal frequency modulation (MTSFM). The MTSFM waveform's modulation function is represented as a finite Fourier series expansion. The Fourier coefficients are utilized as a discrete set of design parameters. These design parameters can be modified to shape the spectrum, auto-correlation function (ACF), and ambiguity function (AF) shapes of the waveform. The MTSFM waveform model naturally possesses the constant envelope and spectral compactness properties that make it well suited for transmission on practical radar/sonar transmitters which utilize high power amplifiers. The MTSFM has an exact mathematical definition for its time-series using generalized Bessel functions which allow for deriving closed-form analytical expressions for its spectrum, AF, and ACF. These expressions allow for establishing well-defined optimization problems that finely tune the MTSFM's properties. This adaptive waveform design model is demonstrated by optimizing MTSFM waveforms that initially possess a "thumbtack-like" AF shape. The resulting optimized designs possess substantially improved sidelobe levels over specified regions in the range-Doppler plane without increasing their time-bandwidth product. Simulations additionally demonstrate that the optimized thumbtacklike MTSFM waveforms are competitive with thumbtacklike phase-coded waveforms derived from design algorithms available in the published literature.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2020.3046086