Loading…
High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts
Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CV...
Saved in:
Published in: | IEEE electron device letters 2021-02, Vol.42 (2), p.272-275 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 275 |
container_issue | 2 |
container_start_page | 272 |
container_title | IEEE electron device letters |
container_volume | 42 |
creator | Chou, Ang-Sheng Cheng, Chao-Ching Liew, San-Lin Ho, Po-Hsun Wang, Shih-Yun Chang, Yu-Chen Chang, Che-Kang Su, Yuan-Chun Huang, Zheng-Da Fu, Fang-Yu Hsu, Chen-Feng Chung, Yun-Yan Chang, Wen-Hao Li, Lain-Jong Wu, Chih-I |
description | Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CVD) and demonstrated superior short channel n-type field effect transistor (nFET) performance reaching an ON-current of 480~\mu \text{A}/\mu \text{m} and keeping the OFF-current below 0.1 nA/ \mu \text{m} at \text{V}_{DS} = 1 V. These efforts are close to the low power specification of Si transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The performance improvement could be attributed to the re-melting behavior of Sn metal. We suggest that the Sn deposited at lower temperatures could reduce the formation of interfacial defects caused by heat, and high-melting-point capping metal also could assist the re-melting phenomenon of underlying Sn contact layer. These process modifications are helpful to form smooth Sn coverage on MoS 2 , thereby reducing the contact resistance to 0.84 \text{k}\Omega \cdot \mu \text{m} . This work provides a practical pathway to form low-resistance metal contact on 2D semiconductors for performance improvement. |
doi_str_mv | 10.1109/LED.2020.3048371 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9311615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9311615</ieee_id><sourcerecordid>2483238609</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-afb61c988e89d5100736477c611b7589e4167f3369c929f7675f1b1544f07f7d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKt3wUvA89a8m--jbFsrVHqoHydZ0m3iprTJmk0P_fcu1NPM4ZkZGITugUwAiH5azqaTkpRkQglTVMIFGgHnqiBc0Es0IpJBQYGIa3TT9ztCgDHJRuh74X9avArFOptscXVMyYaMfcBVaw--MXv8abqY8NR2sffZbvFbDHFvTjYNbl3iMJ-99_jL5xavA161QwhXMWTT5P4WXTmz7-3dv47Rx0BXi2K5enmtnpeFB0pzYdxGQKOVskpvORAiqWBSNgJgI7nSloGQjlKhG11qJ4XkDjbAGXNEOrmlY_R47u1S_D3aPte7eExhmKzL4Y2SKkH0QD2cKW-trbvkDyadak0BBHD6Bxk9W5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483238609</pqid></control><display><type>article</type><title>High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts</title><source>IEEE Xplore (Online service)</source><creator>Chou, Ang-Sheng ; Cheng, Chao-Ching ; Liew, San-Lin ; Ho, Po-Hsun ; Wang, Shih-Yun ; Chang, Yu-Chen ; Chang, Che-Kang ; Su, Yuan-Chun ; Huang, Zheng-Da ; Fu, Fang-Yu ; Hsu, Chen-Feng ; Chung, Yun-Yan ; Chang, Wen-Hao ; Li, Lain-Jong ; Wu, Chih-I</creator><creatorcontrib>Chou, Ang-Sheng ; Cheng, Chao-Ching ; Liew, San-Lin ; Ho, Po-Hsun ; Wang, Shih-Yun ; Chang, Yu-Chen ; Chang, Che-Kang ; Su, Yuan-Chun ; Huang, Zheng-Da ; Fu, Fang-Yu ; Hsu, Chen-Feng ; Chung, Yun-Yan ; Chang, Wen-Hao ; Li, Lain-Jong ; Wu, Chih-I</creatorcontrib><description><![CDATA[Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CVD) and demonstrated superior short channel n-type field effect transistor (nFET) performance reaching an ON-current of <inline-formula> <tex-math notation="LaTeX">480~\mu \text{A}/\mu \text{m} </tex-math></inline-formula> and keeping the OFF-current below 0.1 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">\text{V}_{DS} = 1 </tex-math></inline-formula> V. These efforts are close to the low power specification of Si transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The performance improvement could be attributed to the re-melting behavior of Sn metal. We suggest that the Sn deposited at lower temperatures could reduce the formation of interfacial defects caused by heat, and high-melting-point capping metal also could assist the re-melting phenomenon of underlying Sn contact layer. These process modifications are helpful to form smooth Sn coverage on MoS 2 , thereby reducing the contact resistance to 0.84 <inline-formula> <tex-math notation="LaTeX">\text{k}\Omega \cdot \mu \text{m} </tex-math></inline-formula>. This work provides a practical pathway to form low-resistance metal contact on 2D semiconductors for performance improvement.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.3048371</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge carrier density ; Chemical vapor deposition ; Contact melting ; Contact resistance ; Field effect transistors ; low power transistors ; Melting points ; Metals ; Molybdenum disulfide ; Monolayers ; ohmic contact ; Performance evaluation ; re-melting phenomenon ; Semiconductor devices ; Silicon ; Temperature measurement ; Two dimensional displays</subject><ispartof>IEEE electron device letters, 2021-02, Vol.42 (2), p.272-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2852-1313 ; 0000-0001-5893-0129 ; 0000-0003-4880-6006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9311615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chou, Ang-Sheng</creatorcontrib><creatorcontrib>Cheng, Chao-Ching</creatorcontrib><creatorcontrib>Liew, San-Lin</creatorcontrib><creatorcontrib>Ho, Po-Hsun</creatorcontrib><creatorcontrib>Wang, Shih-Yun</creatorcontrib><creatorcontrib>Chang, Yu-Chen</creatorcontrib><creatorcontrib>Chang, Che-Kang</creatorcontrib><creatorcontrib>Su, Yuan-Chun</creatorcontrib><creatorcontrib>Huang, Zheng-Da</creatorcontrib><creatorcontrib>Fu, Fang-Yu</creatorcontrib><creatorcontrib>Hsu, Chen-Feng</creatorcontrib><creatorcontrib>Chung, Yun-Yan</creatorcontrib><creatorcontrib>Chang, Wen-Hao</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Wu, Chih-I</creatorcontrib><title>High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CVD) and demonstrated superior short channel n-type field effect transistor (nFET) performance reaching an ON-current of <inline-formula> <tex-math notation="LaTeX">480~\mu \text{A}/\mu \text{m} </tex-math></inline-formula> and keeping the OFF-current below 0.1 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">\text{V}_{DS} = 1 </tex-math></inline-formula> V. These efforts are close to the low power specification of Si transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The performance improvement could be attributed to the re-melting behavior of Sn metal. We suggest that the Sn deposited at lower temperatures could reduce the formation of interfacial defects caused by heat, and high-melting-point capping metal also could assist the re-melting phenomenon of underlying Sn contact layer. These process modifications are helpful to form smooth Sn coverage on MoS 2 , thereby reducing the contact resistance to 0.84 <inline-formula> <tex-math notation="LaTeX">\text{k}\Omega \cdot \mu \text{m} </tex-math></inline-formula>. This work provides a practical pathway to form low-resistance metal contact on 2D semiconductors for performance improvement.]]></description><subject>Charge carrier density</subject><subject>Chemical vapor deposition</subject><subject>Contact melting</subject><subject>Contact resistance</subject><subject>Field effect transistors</subject><subject>low power transistors</subject><subject>Melting points</subject><subject>Metals</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>ohmic contact</subject><subject>Performance evaluation</subject><subject>re-melting phenomenon</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Temperature measurement</subject><subject>Two dimensional displays</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKt3wUvA89a8m--jbFsrVHqoHydZ0m3iprTJmk0P_fcu1NPM4ZkZGITugUwAiH5azqaTkpRkQglTVMIFGgHnqiBc0Es0IpJBQYGIa3TT9ztCgDHJRuh74X9avArFOptscXVMyYaMfcBVaw--MXv8abqY8NR2sffZbvFbDHFvTjYNbl3iMJ-99_jL5xavA161QwhXMWTT5P4WXTmz7-3dv47Rx0BXi2K5enmtnpeFB0pzYdxGQKOVskpvORAiqWBSNgJgI7nSloGQjlKhG11qJ4XkDjbAGXNEOrmlY_R47u1S_D3aPte7eExhmKzL4Y2SKkH0QD2cKW-trbvkDyadak0BBHD6Bxk9W5Y</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chou, Ang-Sheng</creator><creator>Cheng, Chao-Ching</creator><creator>Liew, San-Lin</creator><creator>Ho, Po-Hsun</creator><creator>Wang, Shih-Yun</creator><creator>Chang, Yu-Chen</creator><creator>Chang, Che-Kang</creator><creator>Su, Yuan-Chun</creator><creator>Huang, Zheng-Da</creator><creator>Fu, Fang-Yu</creator><creator>Hsu, Chen-Feng</creator><creator>Chung, Yun-Yan</creator><creator>Chang, Wen-Hao</creator><creator>Li, Lain-Jong</creator><creator>Wu, Chih-I</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2852-1313</orcidid><orcidid>https://orcid.org/0000-0001-5893-0129</orcidid><orcidid>https://orcid.org/0000-0003-4880-6006</orcidid></search><sort><creationdate>20210201</creationdate><title>High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts</title><author>Chou, Ang-Sheng ; Cheng, Chao-Ching ; Liew, San-Lin ; Ho, Po-Hsun ; Wang, Shih-Yun ; Chang, Yu-Chen ; Chang, Che-Kang ; Su, Yuan-Chun ; Huang, Zheng-Da ; Fu, Fang-Yu ; Hsu, Chen-Feng ; Chung, Yun-Yan ; Chang, Wen-Hao ; Li, Lain-Jong ; Wu, Chih-I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-afb61c988e89d5100736477c611b7589e4167f3369c929f7675f1b1544f07f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge carrier density</topic><topic>Chemical vapor deposition</topic><topic>Contact melting</topic><topic>Contact resistance</topic><topic>Field effect transistors</topic><topic>low power transistors</topic><topic>Melting points</topic><topic>Metals</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>ohmic contact</topic><topic>Performance evaluation</topic><topic>re-melting phenomenon</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Temperature measurement</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Ang-Sheng</creatorcontrib><creatorcontrib>Cheng, Chao-Ching</creatorcontrib><creatorcontrib>Liew, San-Lin</creatorcontrib><creatorcontrib>Ho, Po-Hsun</creatorcontrib><creatorcontrib>Wang, Shih-Yun</creatorcontrib><creatorcontrib>Chang, Yu-Chen</creatorcontrib><creatorcontrib>Chang, Che-Kang</creatorcontrib><creatorcontrib>Su, Yuan-Chun</creatorcontrib><creatorcontrib>Huang, Zheng-Da</creatorcontrib><creatorcontrib>Fu, Fang-Yu</creatorcontrib><creatorcontrib>Hsu, Chen-Feng</creatorcontrib><creatorcontrib>Chung, Yun-Yan</creatorcontrib><creatorcontrib>Chang, Wen-Hao</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Wu, Chih-I</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Ang-Sheng</au><au>Cheng, Chao-Ching</au><au>Liew, San-Lin</au><au>Ho, Po-Hsun</au><au>Wang, Shih-Yun</au><au>Chang, Yu-Chen</au><au>Chang, Che-Kang</au><au>Su, Yuan-Chun</au><au>Huang, Zheng-Da</au><au>Fu, Fang-Yu</au><au>Hsu, Chen-Feng</au><au>Chung, Yun-Yan</au><au>Chang, Wen-Hao</au><au>Li, Lain-Jong</au><au>Wu, Chih-I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>42</volume><issue>2</issue><spage>272</spage><epage>275</epage><pages>272-275</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CVD) and demonstrated superior short channel n-type field effect transistor (nFET) performance reaching an ON-current of <inline-formula> <tex-math notation="LaTeX">480~\mu \text{A}/\mu \text{m} </tex-math></inline-formula> and keeping the OFF-current below 0.1 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">\text{V}_{DS} = 1 </tex-math></inline-formula> V. These efforts are close to the low power specification of Si transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The performance improvement could be attributed to the re-melting behavior of Sn metal. We suggest that the Sn deposited at lower temperatures could reduce the formation of interfacial defects caused by heat, and high-melting-point capping metal also could assist the re-melting phenomenon of underlying Sn contact layer. These process modifications are helpful to form smooth Sn coverage on MoS 2 , thereby reducing the contact resistance to 0.84 <inline-formula> <tex-math notation="LaTeX">\text{k}\Omega \cdot \mu \text{m} </tex-math></inline-formula>. This work provides a practical pathway to form low-resistance metal contact on 2D semiconductors for performance improvement.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.3048371</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2852-1313</orcidid><orcidid>https://orcid.org/0000-0001-5893-0129</orcidid><orcidid>https://orcid.org/0000-0003-4880-6006</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2021-02, Vol.42 (2), p.272-275 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_9311615 |
source | IEEE Xplore (Online service) |
subjects | Charge carrier density Chemical vapor deposition Contact melting Contact resistance Field effect transistors low power transistors Melting points Metals Molybdenum disulfide Monolayers ohmic contact Performance evaluation re-melting phenomenon Semiconductor devices Silicon Temperature measurement Two dimensional displays |
title | High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20On-State%20Current%20in%20Chemical%20Vapor%20Deposited%20Monolayer%20MoS2%20nFETs%20With%20Sn%20Ohmic%20Contacts&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Chou,%20Ang-Sheng&rft.date=2021-02-01&rft.volume=42&rft.issue=2&rft.spage=272&rft.epage=275&rft.pages=272-275&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.3048371&rft_dat=%3Cproquest_ieee_%3E2483238609%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-afb61c988e89d5100736477c611b7589e4167f3369c929f7675f1b1544f07f7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483238609&rft_id=info:pmid/&rft_ieee_id=9311615&rfr_iscdi=true |