Loading…

High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts

Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CV...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2021-02, Vol.42 (2), p.272-275
Main Authors: Chou, Ang-Sheng, Cheng, Chao-Ching, Liew, San-Lin, Ho, Po-Hsun, Wang, Shih-Yun, Chang, Yu-Chen, Chang, Che-Kang, Su, Yuan-Chun, Huang, Zheng-Da, Fu, Fang-Yu, Hsu, Chen-Feng, Chung, Yun-Yan, Chang, Wen-Hao, Li, Lain-Jong, Wu, Chih-I
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 275
container_issue 2
container_start_page 272
container_title IEEE electron device letters
container_volume 42
creator Chou, Ang-Sheng
Cheng, Chao-Ching
Liew, San-Lin
Ho, Po-Hsun
Wang, Shih-Yun
Chang, Yu-Chen
Chang, Che-Kang
Su, Yuan-Chun
Huang, Zheng-Da
Fu, Fang-Yu
Hsu, Chen-Feng
Chung, Yun-Yan
Chang, Wen-Hao
Li, Lain-Jong
Wu, Chih-I
description Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CVD) and demonstrated superior short channel n-type field effect transistor (nFET) performance reaching an ON-current of 480~\mu \text{A}/\mu \text{m} and keeping the OFF-current below 0.1 nA/ \mu \text{m} at \text{V}_{DS} = 1 V. These efforts are close to the low power specification of Si transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The performance improvement could be attributed to the re-melting behavior of Sn metal. We suggest that the Sn deposited at lower temperatures could reduce the formation of interfacial defects caused by heat, and high-melting-point capping metal also could assist the re-melting phenomenon of underlying Sn contact layer. These process modifications are helpful to form smooth Sn coverage on MoS 2 , thereby reducing the contact resistance to 0.84 \text{k}\Omega \cdot \mu \text{m} . This work provides a practical pathway to form low-resistance metal contact on 2D semiconductors for performance improvement.
doi_str_mv 10.1109/LED.2020.3048371
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9311615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9311615</ieee_id><sourcerecordid>2483238609</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-afb61c988e89d5100736477c611b7589e4167f3369c929f7675f1b1544f07f7d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKt3wUvA89a8m--jbFsrVHqoHydZ0m3iprTJmk0P_fcu1NPM4ZkZGITugUwAiH5azqaTkpRkQglTVMIFGgHnqiBc0Es0IpJBQYGIa3TT9ztCgDHJRuh74X9avArFOptscXVMyYaMfcBVaw--MXv8abqY8NR2sffZbvFbDHFvTjYNbl3iMJ-99_jL5xavA161QwhXMWTT5P4WXTmz7-3dv47Rx0BXi2K5enmtnpeFB0pzYdxGQKOVskpvORAiqWBSNgJgI7nSloGQjlKhG11qJ4XkDjbAGXNEOrmlY_R47u1S_D3aPte7eExhmKzL4Y2SKkH0QD2cKW-trbvkDyadak0BBHD6Bxk9W5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483238609</pqid></control><display><type>article</type><title>High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts</title><source>IEEE Xplore (Online service)</source><creator>Chou, Ang-Sheng ; Cheng, Chao-Ching ; Liew, San-Lin ; Ho, Po-Hsun ; Wang, Shih-Yun ; Chang, Yu-Chen ; Chang, Che-Kang ; Su, Yuan-Chun ; Huang, Zheng-Da ; Fu, Fang-Yu ; Hsu, Chen-Feng ; Chung, Yun-Yan ; Chang, Wen-Hao ; Li, Lain-Jong ; Wu, Chih-I</creator><creatorcontrib>Chou, Ang-Sheng ; Cheng, Chao-Ching ; Liew, San-Lin ; Ho, Po-Hsun ; Wang, Shih-Yun ; Chang, Yu-Chen ; Chang, Che-Kang ; Su, Yuan-Chun ; Huang, Zheng-Da ; Fu, Fang-Yu ; Hsu, Chen-Feng ; Chung, Yun-Yan ; Chang, Wen-Hao ; Li, Lain-Jong ; Wu, Chih-I</creatorcontrib><description><![CDATA[Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CVD) and demonstrated superior short channel n-type field effect transistor (nFET) performance reaching an ON-current of <inline-formula> <tex-math notation="LaTeX">480~\mu \text{A}/\mu \text{m} </tex-math></inline-formula> and keeping the OFF-current below 0.1 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">\text{V}_{DS} = 1 </tex-math></inline-formula> V. These efforts are close to the low power specification of Si transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The performance improvement could be attributed to the re-melting behavior of Sn metal. We suggest that the Sn deposited at lower temperatures could reduce the formation of interfacial defects caused by heat, and high-melting-point capping metal also could assist the re-melting phenomenon of underlying Sn contact layer. These process modifications are helpful to form smooth Sn coverage on MoS 2 , thereby reducing the contact resistance to 0.84 <inline-formula> <tex-math notation="LaTeX">\text{k}\Omega \cdot \mu \text{m} </tex-math></inline-formula>. This work provides a practical pathway to form low-resistance metal contact on 2D semiconductors for performance improvement.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.3048371</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge carrier density ; Chemical vapor deposition ; Contact melting ; Contact resistance ; Field effect transistors ; low power transistors ; Melting points ; Metals ; Molybdenum disulfide ; Monolayers ; ohmic contact ; Performance evaluation ; re-melting phenomenon ; Semiconductor devices ; Silicon ; Temperature measurement ; Two dimensional displays</subject><ispartof>IEEE electron device letters, 2021-02, Vol.42 (2), p.272-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2852-1313 ; 0000-0001-5893-0129 ; 0000-0003-4880-6006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9311615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chou, Ang-Sheng</creatorcontrib><creatorcontrib>Cheng, Chao-Ching</creatorcontrib><creatorcontrib>Liew, San-Lin</creatorcontrib><creatorcontrib>Ho, Po-Hsun</creatorcontrib><creatorcontrib>Wang, Shih-Yun</creatorcontrib><creatorcontrib>Chang, Yu-Chen</creatorcontrib><creatorcontrib>Chang, Che-Kang</creatorcontrib><creatorcontrib>Su, Yuan-Chun</creatorcontrib><creatorcontrib>Huang, Zheng-Da</creatorcontrib><creatorcontrib>Fu, Fang-Yu</creatorcontrib><creatorcontrib>Hsu, Chen-Feng</creatorcontrib><creatorcontrib>Chung, Yun-Yan</creatorcontrib><creatorcontrib>Chang, Wen-Hao</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Wu, Chih-I</creatorcontrib><title>High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CVD) and demonstrated superior short channel n-type field effect transistor (nFET) performance reaching an ON-current of <inline-formula> <tex-math notation="LaTeX">480~\mu \text{A}/\mu \text{m} </tex-math></inline-formula> and keeping the OFF-current below 0.1 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">\text{V}_{DS} = 1 </tex-math></inline-formula> V. These efforts are close to the low power specification of Si transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The performance improvement could be attributed to the re-melting behavior of Sn metal. We suggest that the Sn deposited at lower temperatures could reduce the formation of interfacial defects caused by heat, and high-melting-point capping metal also could assist the re-melting phenomenon of underlying Sn contact layer. These process modifications are helpful to form smooth Sn coverage on MoS 2 , thereby reducing the contact resistance to 0.84 <inline-formula> <tex-math notation="LaTeX">\text{k}\Omega \cdot \mu \text{m} </tex-math></inline-formula>. This work provides a practical pathway to form low-resistance metal contact on 2D semiconductors for performance improvement.]]></description><subject>Charge carrier density</subject><subject>Chemical vapor deposition</subject><subject>Contact melting</subject><subject>Contact resistance</subject><subject>Field effect transistors</subject><subject>low power transistors</subject><subject>Melting points</subject><subject>Metals</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>ohmic contact</subject><subject>Performance evaluation</subject><subject>re-melting phenomenon</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Temperature measurement</subject><subject>Two dimensional displays</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKt3wUvA89a8m--jbFsrVHqoHydZ0m3iprTJmk0P_fcu1NPM4ZkZGITugUwAiH5azqaTkpRkQglTVMIFGgHnqiBc0Es0IpJBQYGIa3TT9ztCgDHJRuh74X9avArFOptscXVMyYaMfcBVaw--MXv8abqY8NR2sffZbvFbDHFvTjYNbl3iMJ-99_jL5xavA161QwhXMWTT5P4WXTmz7-3dv47Rx0BXi2K5enmtnpeFB0pzYdxGQKOVskpvORAiqWBSNgJgI7nSloGQjlKhG11qJ4XkDjbAGXNEOrmlY_R47u1S_D3aPte7eExhmKzL4Y2SKkH0QD2cKW-trbvkDyadak0BBHD6Bxk9W5Y</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chou, Ang-Sheng</creator><creator>Cheng, Chao-Ching</creator><creator>Liew, San-Lin</creator><creator>Ho, Po-Hsun</creator><creator>Wang, Shih-Yun</creator><creator>Chang, Yu-Chen</creator><creator>Chang, Che-Kang</creator><creator>Su, Yuan-Chun</creator><creator>Huang, Zheng-Da</creator><creator>Fu, Fang-Yu</creator><creator>Hsu, Chen-Feng</creator><creator>Chung, Yun-Yan</creator><creator>Chang, Wen-Hao</creator><creator>Li, Lain-Jong</creator><creator>Wu, Chih-I</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2852-1313</orcidid><orcidid>https://orcid.org/0000-0001-5893-0129</orcidid><orcidid>https://orcid.org/0000-0003-4880-6006</orcidid></search><sort><creationdate>20210201</creationdate><title>High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts</title><author>Chou, Ang-Sheng ; Cheng, Chao-Ching ; Liew, San-Lin ; Ho, Po-Hsun ; Wang, Shih-Yun ; Chang, Yu-Chen ; Chang, Che-Kang ; Su, Yuan-Chun ; Huang, Zheng-Da ; Fu, Fang-Yu ; Hsu, Chen-Feng ; Chung, Yun-Yan ; Chang, Wen-Hao ; Li, Lain-Jong ; Wu, Chih-I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-afb61c988e89d5100736477c611b7589e4167f3369c929f7675f1b1544f07f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge carrier density</topic><topic>Chemical vapor deposition</topic><topic>Contact melting</topic><topic>Contact resistance</topic><topic>Field effect transistors</topic><topic>low power transistors</topic><topic>Melting points</topic><topic>Metals</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>ohmic contact</topic><topic>Performance evaluation</topic><topic>re-melting phenomenon</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Temperature measurement</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Ang-Sheng</creatorcontrib><creatorcontrib>Cheng, Chao-Ching</creatorcontrib><creatorcontrib>Liew, San-Lin</creatorcontrib><creatorcontrib>Ho, Po-Hsun</creatorcontrib><creatorcontrib>Wang, Shih-Yun</creatorcontrib><creatorcontrib>Chang, Yu-Chen</creatorcontrib><creatorcontrib>Chang, Che-Kang</creatorcontrib><creatorcontrib>Su, Yuan-Chun</creatorcontrib><creatorcontrib>Huang, Zheng-Da</creatorcontrib><creatorcontrib>Fu, Fang-Yu</creatorcontrib><creatorcontrib>Hsu, Chen-Feng</creatorcontrib><creatorcontrib>Chung, Yun-Yan</creatorcontrib><creatorcontrib>Chang, Wen-Hao</creatorcontrib><creatorcontrib>Li, Lain-Jong</creatorcontrib><creatorcontrib>Wu, Chih-I</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Ang-Sheng</au><au>Cheng, Chao-Ching</au><au>Liew, San-Lin</au><au>Ho, Po-Hsun</au><au>Wang, Shih-Yun</au><au>Chang, Yu-Chen</au><au>Chang, Che-Kang</au><au>Su, Yuan-Chun</au><au>Huang, Zheng-Da</au><au>Fu, Fang-Yu</au><au>Hsu, Chen-Feng</au><au>Chung, Yun-Yan</au><au>Chang, Wen-Hao</au><au>Li, Lain-Jong</au><au>Wu, Chih-I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>42</volume><issue>2</issue><spage>272</spage><epage>275</epage><pages>272-275</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[Proving the device performance and process feasibility is imperative for the realization of two-dimensional (2D) semiconductor electronics. In this work, we have successfully adopted Tin (Sn) as the Ohmic contact metal to monolayer molybdenum disulfide (MoS 2 ) grown by chemical vapor deposition (CVD) and demonstrated superior short channel n-type field effect transistor (nFET) performance reaching an ON-current of <inline-formula> <tex-math notation="LaTeX">480~\mu \text{A}/\mu \text{m} </tex-math></inline-formula> and keeping the OFF-current below 0.1 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">\text{V}_{DS} = 1 </tex-math></inline-formula> V. These efforts are close to the low power specification of Si transistors in the metrics of International Roadmap for Devices and Systems (IRDS). The performance improvement could be attributed to the re-melting behavior of Sn metal. We suggest that the Sn deposited at lower temperatures could reduce the formation of interfacial defects caused by heat, and high-melting-point capping metal also could assist the re-melting phenomenon of underlying Sn contact layer. These process modifications are helpful to form smooth Sn coverage on MoS 2 , thereby reducing the contact resistance to 0.84 <inline-formula> <tex-math notation="LaTeX">\text{k}\Omega \cdot \mu \text{m} </tex-math></inline-formula>. This work provides a practical pathway to form low-resistance metal contact on 2D semiconductors for performance improvement.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.3048371</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2852-1313</orcidid><orcidid>https://orcid.org/0000-0001-5893-0129</orcidid><orcidid>https://orcid.org/0000-0003-4880-6006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2021-02, Vol.42 (2), p.272-275
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_9311615
source IEEE Xplore (Online service)
subjects Charge carrier density
Chemical vapor deposition
Contact melting
Contact resistance
Field effect transistors
low power transistors
Melting points
Metals
Molybdenum disulfide
Monolayers
ohmic contact
Performance evaluation
re-melting phenomenon
Semiconductor devices
Silicon
Temperature measurement
Two dimensional displays
title High On-State Current in Chemical Vapor Deposited Monolayer MoS2 nFETs With Sn Ohmic Contacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20On-State%20Current%20in%20Chemical%20Vapor%20Deposited%20Monolayer%20MoS2%20nFETs%20With%20Sn%20Ohmic%20Contacts&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Chou,%20Ang-Sheng&rft.date=2021-02-01&rft.volume=42&rft.issue=2&rft.spage=272&rft.epage=275&rft.pages=272-275&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.3048371&rft_dat=%3Cproquest_ieee_%3E2483238609%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-afb61c988e89d5100736477c611b7589e4167f3369c929f7675f1b1544f07f7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483238609&rft_id=info:pmid/&rft_ieee_id=9311615&rfr_iscdi=true