Loading…
Dense Point Diffusion for 3D Object Detection
The backbone network adopted in state-of-the-art 3D object detectors lacks a good balance between high point resolution and large receptive field, both of which are desirable for object detection on point clouds. This work proposes Dense Point Diffusion module, a novel backbone network that solves t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The backbone network adopted in state-of-the-art 3D object detectors lacks a good balance between high point resolution and large receptive field, both of which are desirable for object detection on point clouds. This work proposes Dense Point Diffusion module, a novel backbone network that solves these issues. It adopts dilated point convolution as a building block to enlarge the receptive field and retain the point resolution at the same time. Further, a number of such layers are densely connected, giving rise to large receptive field and multi-scale feature fusion, which are effective for object detection task. Comprehensive experiments verify the efficacy of our approach. The source code 1 has been released to facilitate the reproduction of the results. 1 https://github.com/AsahiLiu/PointDetectron |
---|---|
ISSN: | 2475-7888 |
DOI: | 10.1109/3DV50981.2020.00086 |