Loading…

Background Initialization Based on Adaptive Online Low-rank Subspace Learning

Background initialization is to estimate an appropriate representation for background of a scene, and has a decisive role in determining the performance of background subtraction. Background initialization based on low-rank subspace learning can obtain the background by learning the low-rank subspac...

Full description

Saved in:
Bibliographic Details
Main Authors: Han, Guang, Zhang, Guanghao, Cai, Xi
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-26ed7ae1bdb5e7c7d3fd97d56647cd81f9124700df67b56f50eefafa23141dac3
cites
container_end_page 558
container_issue
container_start_page 555
container_title
container_volume 1
creator Han, Guang
Zhang, Guanghao
Cai, Xi
description Background initialization is to estimate an appropriate representation for background of a scene, and has a decisive role in determining the performance of background subtraction. Background initialization based on low-rank subspace learning can obtain the background by learning the low-rank subspace. However, most of these methods are batch- based methods requiring heavy memory cost and unable to adapt to dynamic scenes. Accordingly, in this paper, we propose a background initialization method based on adaptive online low-rank subspace learning. The low-rank background subspace is estimated by online robust principal component analysis (PCA) in an online manner. An adaptive weighting parameter is utilized in the online robust PCA to enhance its ability to dynamically model the background. Experimental results demonstrate that, the proposed method can effectively gain the backgrounds of dynamic scenes.
doi_str_mv 10.1109/ICSP48669.2020.9320960
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9320960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9320960</ieee_id><sourcerecordid>9320960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-26ed7ae1bdb5e7c7d3fd97d56647cd81f9124700df67b56f50eefafa23141dac3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhUdUsNY-gSB5gdQ7_5llW6wWKhWq63KTuVPGxklJUkWf3oLF1TnfWXyLw9gdhzHn4O4Xs_WLKoxxYwECxk4KcAbO2DW3ouBKFeDO_8E6fcEGghuVayH4FRt13TsASF4URpoBe55itdu2zSH5bJFiH7GOP9jHJmVT7MhnxzLxuO_jJ2WrVMdE2bL5yltMu2x9KLs9VseFsE0xbW_YZcC6o9Eph-xt_vA6e8qXq8fFbLLMK6FNnwtD3iLx0peabGW9DN5Zr41RtvIFD44LZQF8MLbUJmggChhQSK64x0oO2e2fNxLRZt_GD2y_N6cr5C8iH1Id</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Background Initialization Based on Adaptive Online Low-rank Subspace Learning</title><source>IEEE Xplore All Conference Series</source><creator>Han, Guang ; Zhang, Guanghao ; Cai, Xi</creator><creatorcontrib>Han, Guang ; Zhang, Guanghao ; Cai, Xi</creatorcontrib><description>Background initialization is to estimate an appropriate representation for background of a scene, and has a decisive role in determining the performance of background subtraction. Background initialization based on low-rank subspace learning can obtain the background by learning the low-rank subspace. However, most of these methods are batch- based methods requiring heavy memory cost and unable to adapt to dynamic scenes. Accordingly, in this paper, we propose a background initialization method based on adaptive online low-rank subspace learning. The low-rank background subspace is estimated by online robust principal component analysis (PCA) in an online manner. An adaptive weighting parameter is utilized in the online robust PCA to enhance its ability to dynamically model the background. Experimental results demonstrate that, the proposed method can effectively gain the backgrounds of dynamic scenes.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 1728144795</identifier><identifier>ISBN: 9781728144795</identifier><identifier>EISBN: 1728144809</identifier><identifier>EISBN: 9781728144801</identifier><identifier>EISBN: 1728144787</identifier><identifier>EISBN: 9781728144788</identifier><identifier>DOI: 10.1109/ICSP48669.2020.9320960</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; adaptive weighting parameter ; background initialization ; low-rank subspace learning ; Matrix decomposition ; Measurement ; online robust principal component analysis ; Principal component analysis ; Sparse matrices ; Vehicle dynamics ; Video sequences</subject><ispartof>2020 15th IEEE International Conference on Signal Processing (ICSP), 2020, Vol.1, p.555-558</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-26ed7ae1bdb5e7c7d3fd97d56647cd81f9124700df67b56f50eefafa23141dac3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9320960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9320960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Guang</creatorcontrib><creatorcontrib>Zhang, Guanghao</creatorcontrib><creatorcontrib>Cai, Xi</creatorcontrib><title>Background Initialization Based on Adaptive Online Low-rank Subspace Learning</title><title>2020 15th IEEE International Conference on Signal Processing (ICSP)</title><addtitle>ICSP</addtitle><description>Background initialization is to estimate an appropriate representation for background of a scene, and has a decisive role in determining the performance of background subtraction. Background initialization based on low-rank subspace learning can obtain the background by learning the low-rank subspace. However, most of these methods are batch- based methods requiring heavy memory cost and unable to adapt to dynamic scenes. Accordingly, in this paper, we propose a background initialization method based on adaptive online low-rank subspace learning. The low-rank background subspace is estimated by online robust principal component analysis (PCA) in an online manner. An adaptive weighting parameter is utilized in the online robust PCA to enhance its ability to dynamically model the background. Experimental results demonstrate that, the proposed method can effectively gain the backgrounds of dynamic scenes.</description><subject>Adaptation models</subject><subject>adaptive weighting parameter</subject><subject>background initialization</subject><subject>low-rank subspace learning</subject><subject>Matrix decomposition</subject><subject>Measurement</subject><subject>online robust principal component analysis</subject><subject>Principal component analysis</subject><subject>Sparse matrices</subject><subject>Vehicle dynamics</subject><subject>Video sequences</subject><issn>2164-5221</issn><isbn>1728144795</isbn><isbn>9781728144795</isbn><isbn>1728144809</isbn><isbn>9781728144801</isbn><isbn>1728144787</isbn><isbn>9781728144788</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kM1Kw0AUhUdUsNY-gSB5gdQ7_5llW6wWKhWq63KTuVPGxklJUkWf3oLF1TnfWXyLw9gdhzHn4O4Xs_WLKoxxYwECxk4KcAbO2DW3ouBKFeDO_8E6fcEGghuVayH4FRt13TsASF4URpoBe55itdu2zSH5bJFiH7GOP9jHJmVT7MhnxzLxuO_jJ2WrVMdE2bL5yltMu2x9KLs9VseFsE0xbW_YZcC6o9Eph-xt_vA6e8qXq8fFbLLMK6FNnwtD3iLx0peabGW9DN5Zr41RtvIFD44LZQF8MLbUJmggChhQSK64x0oO2e2fNxLRZt_GD2y_N6cr5C8iH1Id</recordid><startdate>20201206</startdate><enddate>20201206</enddate><creator>Han, Guang</creator><creator>Zhang, Guanghao</creator><creator>Cai, Xi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20201206</creationdate><title>Background Initialization Based on Adaptive Online Low-rank Subspace Learning</title><author>Han, Guang ; Zhang, Guanghao ; Cai, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-26ed7ae1bdb5e7c7d3fd97d56647cd81f9124700df67b56f50eefafa23141dac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>adaptive weighting parameter</topic><topic>background initialization</topic><topic>low-rank subspace learning</topic><topic>Matrix decomposition</topic><topic>Measurement</topic><topic>online robust principal component analysis</topic><topic>Principal component analysis</topic><topic>Sparse matrices</topic><topic>Vehicle dynamics</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Guang</creatorcontrib><creatorcontrib>Zhang, Guanghao</creatorcontrib><creatorcontrib>Cai, Xi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Guang</au><au>Zhang, Guanghao</au><au>Cai, Xi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Background Initialization Based on Adaptive Online Low-rank Subspace Learning</atitle><btitle>2020 15th IEEE International Conference on Signal Processing (ICSP)</btitle><stitle>ICSP</stitle><date>2020-12-06</date><risdate>2020</risdate><volume>1</volume><spage>555</spage><epage>558</epage><pages>555-558</pages><issn>2164-5221</issn><isbn>1728144795</isbn><isbn>9781728144795</isbn><eisbn>1728144809</eisbn><eisbn>9781728144801</eisbn><eisbn>1728144787</eisbn><eisbn>9781728144788</eisbn><abstract>Background initialization is to estimate an appropriate representation for background of a scene, and has a decisive role in determining the performance of background subtraction. Background initialization based on low-rank subspace learning can obtain the background by learning the low-rank subspace. However, most of these methods are batch- based methods requiring heavy memory cost and unable to adapt to dynamic scenes. Accordingly, in this paper, we propose a background initialization method based on adaptive online low-rank subspace learning. The low-rank background subspace is estimated by online robust principal component analysis (PCA) in an online manner. An adaptive weighting parameter is utilized in the online robust PCA to enhance its ability to dynamically model the background. Experimental results demonstrate that, the proposed method can effectively gain the backgrounds of dynamic scenes.</abstract><pub>IEEE</pub><doi>10.1109/ICSP48669.2020.9320960</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2020 15th IEEE International Conference on Signal Processing (ICSP), 2020, Vol.1, p.555-558
issn 2164-5221
language eng
recordid cdi_ieee_primary_9320960
source IEEE Xplore All Conference Series
subjects Adaptation models
adaptive weighting parameter
background initialization
low-rank subspace learning
Matrix decomposition
Measurement
online robust principal component analysis
Principal component analysis
Sparse matrices
Vehicle dynamics
Video sequences
title Background Initialization Based on Adaptive Online Low-rank Subspace Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Background%20Initialization%20Based%20on%20Adaptive%20Online%20Low-rank%20Subspace%20Learning&rft.btitle=2020%2015th%20IEEE%20International%20Conference%20on%20Signal%20Processing%20(ICSP)&rft.au=Han,%20Guang&rft.date=2020-12-06&rft.volume=1&rft.spage=555&rft.epage=558&rft.pages=555-558&rft.issn=2164-5221&rft.isbn=1728144795&rft.isbn_list=9781728144795&rft_id=info:doi/10.1109/ICSP48669.2020.9320960&rft.eisbn=1728144809&rft.eisbn_list=9781728144801&rft.eisbn_list=1728144787&rft.eisbn_list=9781728144788&rft_dat=%3Cieee_CHZPO%3E9320960%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-26ed7ae1bdb5e7c7d3fd97d56647cd81f9124700df67b56f50eefafa23141dac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9320960&rfr_iscdi=true