Loading…
Optimum Device and Modulation Scheme Selection for Optical Wireless Communications
There has been an extensive modelling of the optical wireless channel, and the optimum modulation scheme for a particular channel is well-understood. However, this modelling has not taken into account the trade-offs that transmitter and receiver selection usually involve. For a particular type of tr...
Saved in:
Published in: | Journal of lightwave technology 2021-04, Vol.39 (8), p.2281-2287 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There has been an extensive modelling of the optical wireless channel, and the optimum modulation scheme for a particular channel is well-understood. However, this modelling has not taken into account the trade-offs that transmitter and receiver selection usually involve. For a particular type of transmitter, the modulation bandwidth and available power are closely related, as are receiver bandwidth, active area and sensitivity. In this article, we present a design approach that takes this device selection into account. The article details a general design method for an optical wireless communication system using a holistic design approach (i.e., considering channel, modulation schemes, and device constraints). The article shows results for particular examples, showing a substantial increase in margin (or data-rate) is available using this approach. For instance, by using this approach mutually optimising both modulation schemes and device constraints, it is found that for an optimally chosen Gallium Nitride micro-LED and a commercial photo receiver pair, a 20 dB SNR margin (or ∼3 times data-rate improvement) can be obtained compared with a more typical approach mainly concerning the modulation scheme optimisation. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2021.3051379 |