Loading…
Network Intrusion Detection Leveraging Machine Learning and Feature Selection
Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attac...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3 |
---|---|
cites | |
container_end_page | 53 |
container_issue | |
container_start_page | 49 |
container_title | |
container_volume | |
creator | Ali, Arshid Shaukat, Shahtaj Tayyab, Muhammad Khan, Muazzam A Khan, Jan Sher Arshad Ahmad, Jawad |
description | Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attack perception stage, when wrestling with huge-scale and heterogeneous data. In this paper, for dimensionality reduction of data, we use Correlation-based Feature Selection (CFS) and Naïve Bayes (NB) classifier techniques. The proposed Intrusion Detection System (IDS) classifies attacks using a Multilayer Perceptron (MLP) and Instance-Based Learning algorithm (IBK). The accuracy of the introduced IDS is 99.87% and 99.82% with only 5 and 3 features out of 78 features for IBK. Other metrics such as precision, Recall, F-measure, and Receiver Operating Curve (ROC) also confirm the principal performance of IBK compared to MLP. |
doi_str_mv | 10.1109/HONET50430.2020.9322813 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9322813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9322813</ieee_id><sourcerecordid>9322813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3</originalsourceid><addsrcrecordid>eNotkN1OwkAQhVcTEgn2CbywL9A6-9P9uTQIQlLgQrgmy-4Uq7iY7aLx7S2Bq5n5Mufk5BDySKGkFMzTbLWcrCsQHEoGDErDGdOU35DMKA2KawoVU-qWDKkRphAU5B3Juu4DoH8HSoUaksUS0-8xfubzkOKpa48hf8GELp23Gn8w2n0b9vnCuvc2YI9sDGdgg8-naNMpYv6Gh4vingwae-gwu84R2Uwn6_GsqFev8_FzXTgOMhUKnNuho1qjU5x5VVVGSqM826nGq8b1l7Pe9zmZEMyi5l5SC15WvYgjH5GHi2-LiNvv2H7Z-Le9FsD_Aa1GUG8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Network Intrusion Detection Leveraging Machine Learning and Feature Selection</title><source>IEEE Xplore All Conference Series</source><creator>Ali, Arshid ; Shaukat, Shahtaj ; Tayyab, Muhammad ; Khan, Muazzam A ; Khan, Jan Sher ; Arshad ; Ahmad, Jawad</creator><creatorcontrib>Ali, Arshid ; Shaukat, Shahtaj ; Tayyab, Muhammad ; Khan, Muazzam A ; Khan, Jan Sher ; Arshad ; Ahmad, Jawad</creatorcontrib><description>Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attack perception stage, when wrestling with huge-scale and heterogeneous data. In this paper, for dimensionality reduction of data, we use Correlation-based Feature Selection (CFS) and Naïve Bayes (NB) classifier techniques. The proposed Intrusion Detection System (IDS) classifies attacks using a Multilayer Perceptron (MLP) and Instance-Based Learning algorithm (IBK). The accuracy of the introduced IDS is 99.87% and 99.82% with only 5 and 3 features out of 78 features for IBK. Other metrics such as precision, Recall, F-measure, and Receiver Operating Curve (ROC) also confirm the principal performance of IBK compared to MLP.</description><identifier>EISSN: 1949-4106</identifier><identifier>EISBN: 9780738105277</identifier><identifier>EISBN: 0738105279</identifier><identifier>DOI: 10.1109/HONET50430.2020.9322813</identifier><language>eng</language><publisher>IEEE</publisher><subject>attack perception stage ; CFS ; Classifier subset evaluation ; Correlation ; Correlation-Based Feature (CFS) ; correlation-based feature selection ; Data models ; Dimensionality reduction ; Feature extraction ; feature selection ; heterogeneous data ; high-dimension data set incidents ; huge-scale data ; IBK ; IDS ; instance-based learning algorithm ; Instance-Based Learning algorithm (IBK) ; Intrusion detection ; intrusion detection system ; Intrusion Detection System (IDS) ; learning (artificial intelligence) ; Machine learning algorithms ; MLP ; multilayer perceptron ; Multilayer Perceptron (MLP) ; multilayer perceptrons ; naïve Bayes classifier techniques ; network intrusion detection ; Neural networks ; pattern classification ; receiver operating curve ; ROC ; security of data ; spectral instruction ; superfluous features ; system anomaly detection</subject><ispartof>2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 2020, p.49-53</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9322813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9322813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ali, Arshid</creatorcontrib><creatorcontrib>Shaukat, Shahtaj</creatorcontrib><creatorcontrib>Tayyab, Muhammad</creatorcontrib><creatorcontrib>Khan, Muazzam A</creatorcontrib><creatorcontrib>Khan, Jan Sher</creatorcontrib><creatorcontrib>Arshad</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><title>Network Intrusion Detection Leveraging Machine Learning and Feature Selection</title><title>2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)</title><addtitle>HONET</addtitle><description>Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attack perception stage, when wrestling with huge-scale and heterogeneous data. In this paper, for dimensionality reduction of data, we use Correlation-based Feature Selection (CFS) and Naïve Bayes (NB) classifier techniques. The proposed Intrusion Detection System (IDS) classifies attacks using a Multilayer Perceptron (MLP) and Instance-Based Learning algorithm (IBK). The accuracy of the introduced IDS is 99.87% and 99.82% with only 5 and 3 features out of 78 features for IBK. Other metrics such as precision, Recall, F-measure, and Receiver Operating Curve (ROC) also confirm the principal performance of IBK compared to MLP.</description><subject>attack perception stage</subject><subject>CFS</subject><subject>Classifier subset evaluation</subject><subject>Correlation</subject><subject>Correlation-Based Feature (CFS)</subject><subject>correlation-based feature selection</subject><subject>Data models</subject><subject>Dimensionality reduction</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>heterogeneous data</subject><subject>high-dimension data set incidents</subject><subject>huge-scale data</subject><subject>IBK</subject><subject>IDS</subject><subject>instance-based learning algorithm</subject><subject>Instance-Based Learning algorithm (IBK)</subject><subject>Intrusion detection</subject><subject>intrusion detection system</subject><subject>Intrusion Detection System (IDS)</subject><subject>learning (artificial intelligence)</subject><subject>Machine learning algorithms</subject><subject>MLP</subject><subject>multilayer perceptron</subject><subject>Multilayer Perceptron (MLP)</subject><subject>multilayer perceptrons</subject><subject>naïve Bayes classifier techniques</subject><subject>network intrusion detection</subject><subject>Neural networks</subject><subject>pattern classification</subject><subject>receiver operating curve</subject><subject>ROC</subject><subject>security of data</subject><subject>spectral instruction</subject><subject>superfluous features</subject><subject>system anomaly detection</subject><issn>1949-4106</issn><isbn>9780738105277</isbn><isbn>0738105279</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1OwkAQhVcTEgn2CbywL9A6-9P9uTQIQlLgQrgmy-4Uq7iY7aLx7S2Bq5n5Mufk5BDySKGkFMzTbLWcrCsQHEoGDErDGdOU35DMKA2KawoVU-qWDKkRphAU5B3Juu4DoH8HSoUaksUS0-8xfubzkOKpa48hf8GELp23Gn8w2n0b9vnCuvc2YI9sDGdgg8-naNMpYv6Gh4vingwae-gwu84R2Uwn6_GsqFev8_FzXTgOMhUKnNuho1qjU5x5VVVGSqM826nGq8b1l7Pe9zmZEMyi5l5SC15WvYgjH5GHi2-LiNvv2H7Z-Le9FsD_Aa1GUG8</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Ali, Arshid</creator><creator>Shaukat, Shahtaj</creator><creator>Tayyab, Muhammad</creator><creator>Khan, Muazzam A</creator><creator>Khan, Jan Sher</creator><creator>Arshad</creator><creator>Ahmad, Jawad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20201214</creationdate><title>Network Intrusion Detection Leveraging Machine Learning and Feature Selection</title><author>Ali, Arshid ; Shaukat, Shahtaj ; Tayyab, Muhammad ; Khan, Muazzam A ; Khan, Jan Sher ; Arshad ; Ahmad, Jawad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>attack perception stage</topic><topic>CFS</topic><topic>Classifier subset evaluation</topic><topic>Correlation</topic><topic>Correlation-Based Feature (CFS)</topic><topic>correlation-based feature selection</topic><topic>Data models</topic><topic>Dimensionality reduction</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>heterogeneous data</topic><topic>high-dimension data set incidents</topic><topic>huge-scale data</topic><topic>IBK</topic><topic>IDS</topic><topic>instance-based learning algorithm</topic><topic>Instance-Based Learning algorithm (IBK)</topic><topic>Intrusion detection</topic><topic>intrusion detection system</topic><topic>Intrusion Detection System (IDS)</topic><topic>learning (artificial intelligence)</topic><topic>Machine learning algorithms</topic><topic>MLP</topic><topic>multilayer perceptron</topic><topic>Multilayer Perceptron (MLP)</topic><topic>multilayer perceptrons</topic><topic>naïve Bayes classifier techniques</topic><topic>network intrusion detection</topic><topic>Neural networks</topic><topic>pattern classification</topic><topic>receiver operating curve</topic><topic>ROC</topic><topic>security of data</topic><topic>spectral instruction</topic><topic>superfluous features</topic><topic>system anomaly detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Ali, Arshid</creatorcontrib><creatorcontrib>Shaukat, Shahtaj</creatorcontrib><creatorcontrib>Tayyab, Muhammad</creatorcontrib><creatorcontrib>Khan, Muazzam A</creatorcontrib><creatorcontrib>Khan, Jan Sher</creatorcontrib><creatorcontrib>Arshad</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ali, Arshid</au><au>Shaukat, Shahtaj</au><au>Tayyab, Muhammad</au><au>Khan, Muazzam A</au><au>Khan, Jan Sher</au><au>Arshad</au><au>Ahmad, Jawad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Network Intrusion Detection Leveraging Machine Learning and Feature Selection</atitle><btitle>2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)</btitle><stitle>HONET</stitle><date>2020-12-14</date><risdate>2020</risdate><spage>49</spage><epage>53</epage><pages>49-53</pages><eissn>1949-4106</eissn><eisbn>9780738105277</eisbn><eisbn>0738105279</eisbn><abstract>Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attack perception stage, when wrestling with huge-scale and heterogeneous data. In this paper, for dimensionality reduction of data, we use Correlation-based Feature Selection (CFS) and Naïve Bayes (NB) classifier techniques. The proposed Intrusion Detection System (IDS) classifies attacks using a Multilayer Perceptron (MLP) and Instance-Based Learning algorithm (IBK). The accuracy of the introduced IDS is 99.87% and 99.82% with only 5 and 3 features out of 78 features for IBK. Other metrics such as precision, Recall, F-measure, and Receiver Operating Curve (ROC) also confirm the principal performance of IBK compared to MLP.</abstract><pub>IEEE</pub><doi>10.1109/HONET50430.2020.9322813</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1949-4106 |
ispartof | 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 2020, p.49-53 |
issn | 1949-4106 |
language | eng |
recordid | cdi_ieee_primary_9322813 |
source | IEEE Xplore All Conference Series |
subjects | attack perception stage CFS Classifier subset evaluation Correlation Correlation-Based Feature (CFS) correlation-based feature selection Data models Dimensionality reduction Feature extraction feature selection heterogeneous data high-dimension data set incidents huge-scale data IBK IDS instance-based learning algorithm Instance-Based Learning algorithm (IBK) Intrusion detection intrusion detection system Intrusion Detection System (IDS) learning (artificial intelligence) Machine learning algorithms MLP multilayer perceptron Multilayer Perceptron (MLP) multilayer perceptrons naïve Bayes classifier techniques network intrusion detection Neural networks pattern classification receiver operating curve ROC security of data spectral instruction superfluous features system anomaly detection |
title | Network Intrusion Detection Leveraging Machine Learning and Feature Selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Network%20Intrusion%20Detection%20Leveraging%20Machine%20Learning%20and%20Feature%20Selection&rft.btitle=2020%20IEEE%2017th%20International%20Conference%20on%20Smart%20Communities:%20Improving%20Quality%20of%20Life%20Using%20ICT,%20IoT%20and%20AI%20(HONET)&rft.au=Ali,%20Arshid&rft.date=2020-12-14&rft.spage=49&rft.epage=53&rft.pages=49-53&rft.eissn=1949-4106&rft_id=info:doi/10.1109/HONET50430.2020.9322813&rft.eisbn=9780738105277&rft.eisbn_list=0738105279&rft_dat=%3Cieee_CHZPO%3E9322813%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9322813&rfr_iscdi=true |