Loading…

Network Intrusion Detection Leveraging Machine Learning and Feature Selection

Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attac...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali, Arshid, Shaukat, Shahtaj, Tayyab, Muhammad, Khan, Muazzam A, Khan, Jan Sher, Arshad, Ahmad, Jawad
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3
cites
container_end_page 53
container_issue
container_start_page 49
container_title
container_volume
creator Ali, Arshid
Shaukat, Shahtaj
Tayyab, Muhammad
Khan, Muazzam A
Khan, Jan Sher
Arshad
Ahmad, Jawad
description Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attack perception stage, when wrestling with huge-scale and heterogeneous data. In this paper, for dimensionality reduction of data, we use Correlation-based Feature Selection (CFS) and Naïve Bayes (NB) classifier techniques. The proposed Intrusion Detection System (IDS) classifies attacks using a Multilayer Perceptron (MLP) and Instance-Based Learning algorithm (IBK). The accuracy of the introduced IDS is 99.87% and 99.82% with only 5 and 3 features out of 78 features for IBK. Other metrics such as precision, Recall, F-measure, and Receiver Operating Curve (ROC) also confirm the principal performance of IBK compared to MLP.
doi_str_mv 10.1109/HONET50430.2020.9322813
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9322813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9322813</ieee_id><sourcerecordid>9322813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3</originalsourceid><addsrcrecordid>eNotkN1OwkAQhVcTEgn2CbywL9A6-9P9uTQIQlLgQrgmy-4Uq7iY7aLx7S2Bq5n5Mufk5BDySKGkFMzTbLWcrCsQHEoGDErDGdOU35DMKA2KawoVU-qWDKkRphAU5B3Juu4DoH8HSoUaksUS0-8xfubzkOKpa48hf8GELp23Gn8w2n0b9vnCuvc2YI9sDGdgg8-naNMpYv6Gh4vingwae-gwu84R2Uwn6_GsqFev8_FzXTgOMhUKnNuho1qjU5x5VVVGSqM826nGq8b1l7Pe9zmZEMyi5l5SC15WvYgjH5GHi2-LiNvv2H7Z-Le9FsD_Aa1GUG8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Network Intrusion Detection Leveraging Machine Learning and Feature Selection</title><source>IEEE Xplore All Conference Series</source><creator>Ali, Arshid ; Shaukat, Shahtaj ; Tayyab, Muhammad ; Khan, Muazzam A ; Khan, Jan Sher ; Arshad ; Ahmad, Jawad</creator><creatorcontrib>Ali, Arshid ; Shaukat, Shahtaj ; Tayyab, Muhammad ; Khan, Muazzam A ; Khan, Jan Sher ; Arshad ; Ahmad, Jawad</creatorcontrib><description>Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attack perception stage, when wrestling with huge-scale and heterogeneous data. In this paper, for dimensionality reduction of data, we use Correlation-based Feature Selection (CFS) and Naïve Bayes (NB) classifier techniques. The proposed Intrusion Detection System (IDS) classifies attacks using a Multilayer Perceptron (MLP) and Instance-Based Learning algorithm (IBK). The accuracy of the introduced IDS is 99.87% and 99.82% with only 5 and 3 features out of 78 features for IBK. Other metrics such as precision, Recall, F-measure, and Receiver Operating Curve (ROC) also confirm the principal performance of IBK compared to MLP.</description><identifier>EISSN: 1949-4106</identifier><identifier>EISBN: 9780738105277</identifier><identifier>EISBN: 0738105279</identifier><identifier>DOI: 10.1109/HONET50430.2020.9322813</identifier><language>eng</language><publisher>IEEE</publisher><subject>attack perception stage ; CFS ; Classifier subset evaluation ; Correlation ; Correlation-Based Feature (CFS) ; correlation-based feature selection ; Data models ; Dimensionality reduction ; Feature extraction ; feature selection ; heterogeneous data ; high-dimension data set incidents ; huge-scale data ; IBK ; IDS ; instance-based learning algorithm ; Instance-Based Learning algorithm (IBK) ; Intrusion detection ; intrusion detection system ; Intrusion Detection System (IDS) ; learning (artificial intelligence) ; Machine learning algorithms ; MLP ; multilayer perceptron ; Multilayer Perceptron (MLP) ; multilayer perceptrons ; naïve Bayes classifier techniques ; network intrusion detection ; Neural networks ; pattern classification ; receiver operating curve ; ROC ; security of data ; spectral instruction ; superfluous features ; system anomaly detection</subject><ispartof>2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 2020, p.49-53</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9322813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9322813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ali, Arshid</creatorcontrib><creatorcontrib>Shaukat, Shahtaj</creatorcontrib><creatorcontrib>Tayyab, Muhammad</creatorcontrib><creatorcontrib>Khan, Muazzam A</creatorcontrib><creatorcontrib>Khan, Jan Sher</creatorcontrib><creatorcontrib>Arshad</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><title>Network Intrusion Detection Leveraging Machine Learning and Feature Selection</title><title>2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)</title><addtitle>HONET</addtitle><description>Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attack perception stage, when wrestling with huge-scale and heterogeneous data. In this paper, for dimensionality reduction of data, we use Correlation-based Feature Selection (CFS) and Naïve Bayes (NB) classifier techniques. The proposed Intrusion Detection System (IDS) classifies attacks using a Multilayer Perceptron (MLP) and Instance-Based Learning algorithm (IBK). The accuracy of the introduced IDS is 99.87% and 99.82% with only 5 and 3 features out of 78 features for IBK. Other metrics such as precision, Recall, F-measure, and Receiver Operating Curve (ROC) also confirm the principal performance of IBK compared to MLP.</description><subject>attack perception stage</subject><subject>CFS</subject><subject>Classifier subset evaluation</subject><subject>Correlation</subject><subject>Correlation-Based Feature (CFS)</subject><subject>correlation-based feature selection</subject><subject>Data models</subject><subject>Dimensionality reduction</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>heterogeneous data</subject><subject>high-dimension data set incidents</subject><subject>huge-scale data</subject><subject>IBK</subject><subject>IDS</subject><subject>instance-based learning algorithm</subject><subject>Instance-Based Learning algorithm (IBK)</subject><subject>Intrusion detection</subject><subject>intrusion detection system</subject><subject>Intrusion Detection System (IDS)</subject><subject>learning (artificial intelligence)</subject><subject>Machine learning algorithms</subject><subject>MLP</subject><subject>multilayer perceptron</subject><subject>Multilayer Perceptron (MLP)</subject><subject>multilayer perceptrons</subject><subject>naïve Bayes classifier techniques</subject><subject>network intrusion detection</subject><subject>Neural networks</subject><subject>pattern classification</subject><subject>receiver operating curve</subject><subject>ROC</subject><subject>security of data</subject><subject>spectral instruction</subject><subject>superfluous features</subject><subject>system anomaly detection</subject><issn>1949-4106</issn><isbn>9780738105277</isbn><isbn>0738105279</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1OwkAQhVcTEgn2CbywL9A6-9P9uTQIQlLgQrgmy-4Uq7iY7aLx7S2Bq5n5Mufk5BDySKGkFMzTbLWcrCsQHEoGDErDGdOU35DMKA2KawoVU-qWDKkRphAU5B3Juu4DoH8HSoUaksUS0-8xfubzkOKpa48hf8GELp23Gn8w2n0b9vnCuvc2YI9sDGdgg8-naNMpYv6Gh4vingwae-gwu84R2Uwn6_GsqFev8_FzXTgOMhUKnNuho1qjU5x5VVVGSqM826nGq8b1l7Pe9zmZEMyi5l5SC15WvYgjH5GHi2-LiNvv2H7Z-Le9FsD_Aa1GUG8</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Ali, Arshid</creator><creator>Shaukat, Shahtaj</creator><creator>Tayyab, Muhammad</creator><creator>Khan, Muazzam A</creator><creator>Khan, Jan Sher</creator><creator>Arshad</creator><creator>Ahmad, Jawad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20201214</creationdate><title>Network Intrusion Detection Leveraging Machine Learning and Feature Selection</title><author>Ali, Arshid ; Shaukat, Shahtaj ; Tayyab, Muhammad ; Khan, Muazzam A ; Khan, Jan Sher ; Arshad ; Ahmad, Jawad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>attack perception stage</topic><topic>CFS</topic><topic>Classifier subset evaluation</topic><topic>Correlation</topic><topic>Correlation-Based Feature (CFS)</topic><topic>correlation-based feature selection</topic><topic>Data models</topic><topic>Dimensionality reduction</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>heterogeneous data</topic><topic>high-dimension data set incidents</topic><topic>huge-scale data</topic><topic>IBK</topic><topic>IDS</topic><topic>instance-based learning algorithm</topic><topic>Instance-Based Learning algorithm (IBK)</topic><topic>Intrusion detection</topic><topic>intrusion detection system</topic><topic>Intrusion Detection System (IDS)</topic><topic>learning (artificial intelligence)</topic><topic>Machine learning algorithms</topic><topic>MLP</topic><topic>multilayer perceptron</topic><topic>Multilayer Perceptron (MLP)</topic><topic>multilayer perceptrons</topic><topic>naïve Bayes classifier techniques</topic><topic>network intrusion detection</topic><topic>Neural networks</topic><topic>pattern classification</topic><topic>receiver operating curve</topic><topic>ROC</topic><topic>security of data</topic><topic>spectral instruction</topic><topic>superfluous features</topic><topic>system anomaly detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Ali, Arshid</creatorcontrib><creatorcontrib>Shaukat, Shahtaj</creatorcontrib><creatorcontrib>Tayyab, Muhammad</creatorcontrib><creatorcontrib>Khan, Muazzam A</creatorcontrib><creatorcontrib>Khan, Jan Sher</creatorcontrib><creatorcontrib>Arshad</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ali, Arshid</au><au>Shaukat, Shahtaj</au><au>Tayyab, Muhammad</au><au>Khan, Muazzam A</au><au>Khan, Jan Sher</au><au>Arshad</au><au>Ahmad, Jawad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Network Intrusion Detection Leveraging Machine Learning and Feature Selection</atitle><btitle>2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)</btitle><stitle>HONET</stitle><date>2020-12-14</date><risdate>2020</risdate><spage>49</spage><epage>53</epage><pages>49-53</pages><eissn>1949-4106</eissn><eisbn>9780738105277</eisbn><eisbn>0738105279</eisbn><abstract>Handling superfluous and insignificant features in high-dimension data sets incidents led to a long-term demand for system anomaly detection. Ignoring such elements with spectral instruction not speeds up the analysis process but again facilitates classifiers to make accurate selections during attack perception stage, when wrestling with huge-scale and heterogeneous data. In this paper, for dimensionality reduction of data, we use Correlation-based Feature Selection (CFS) and Naïve Bayes (NB) classifier techniques. The proposed Intrusion Detection System (IDS) classifies attacks using a Multilayer Perceptron (MLP) and Instance-Based Learning algorithm (IBK). The accuracy of the introduced IDS is 99.87% and 99.82% with only 5 and 3 features out of 78 features for IBK. Other metrics such as precision, Recall, F-measure, and Receiver Operating Curve (ROC) also confirm the principal performance of IBK compared to MLP.</abstract><pub>IEEE</pub><doi>10.1109/HONET50430.2020.9322813</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1949-4106
ispartof 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 2020, p.49-53
issn 1949-4106
language eng
recordid cdi_ieee_primary_9322813
source IEEE Xplore All Conference Series
subjects attack perception stage
CFS
Classifier subset evaluation
Correlation
Correlation-Based Feature (CFS)
correlation-based feature selection
Data models
Dimensionality reduction
Feature extraction
feature selection
heterogeneous data
high-dimension data set incidents
huge-scale data
IBK
IDS
instance-based learning algorithm
Instance-Based Learning algorithm (IBK)
Intrusion detection
intrusion detection system
Intrusion Detection System (IDS)
learning (artificial intelligence)
Machine learning algorithms
MLP
multilayer perceptron
Multilayer Perceptron (MLP)
multilayer perceptrons
naïve Bayes classifier techniques
network intrusion detection
Neural networks
pattern classification
receiver operating curve
ROC
security of data
spectral instruction
superfluous features
system anomaly detection
title Network Intrusion Detection Leveraging Machine Learning and Feature Selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Network%20Intrusion%20Detection%20Leveraging%20Machine%20Learning%20and%20Feature%20Selection&rft.btitle=2020%20IEEE%2017th%20International%20Conference%20on%20Smart%20Communities:%20Improving%20Quality%20of%20Life%20Using%20ICT,%20IoT%20and%20AI%20(HONET)&rft.au=Ali,%20Arshid&rft.date=2020-12-14&rft.spage=49&rft.epage=53&rft.pages=49-53&rft.eissn=1949-4106&rft_id=info:doi/10.1109/HONET50430.2020.9322813&rft.eisbn=9780738105277&rft.eisbn_list=0738105279&rft_dat=%3Cieee_CHZPO%3E9322813%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-70ccbec188ec732d75596697d2b7fd7fc966cadd0022442ae83d61a0d65c183e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9322813&rfr_iscdi=true