Loading…
GOES-17 ABI L1b Product Performance with Predictive Calibration
The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6054 |
container_issue | |
container_start_page | 6051 |
container_title | |
container_volume | |
creator | Fulbright, Jon Pogorzala, David Kline, Elizabeth Wang, Zhipeng Yu, Fangfang Yoo, Hyelim Wu, Xiangqian |
description | The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration algorithm (named "Predictive Calibration") was introduced as part of the mitigation strategy. We summarize the early evaluation of L1b products created with this modified algorithm. We also describe some of the imagery artifacts sometimes introduced into the GOES-17 ABI L1b data by the Predictive Calibration or other mitigation steps. |
doi_str_mv | 10.1109/IGARSS39084.2020.9323574 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9323574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9323574</ieee_id><sourcerecordid>9323574</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-53cfca0bd0dbbfa5e2a3eae3b3f80f4476b8b76c706c277bbce41472611f28a23</originalsourceid><addsrcrecordid>eNotj9FKwzAUhqMguE2fwJu8QOtJTtq0V1LLrIXChtXrkaQnGNlWSavi2ztwV_8HH3zwM8YFpEJAed821UvfYwmFSiVISEuUmGl1wZZCy0LkqFV5yRZSZJhoALxmy2n6OEEhARbsodms-0RoXj22vBOWb-M4fLmZbyn6MR7M0RH_CfP7SdAQ3By-iddmH2w0cxiPN-zKm_1Et-ddsben9Wv9nHSbpq2rLgkScE4ydN4ZsAMM1nqTkTRIhtCiL8ArpXNbWJ07DbmTWlvrSAmlZS6El4WRuGJ3_91ARLvPGA4m_u7OZ_EPflRJDw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GOES-17 ABI L1b Product Performance with Predictive Calibration</title><source>IEEE Xplore All Conference Series</source><creator>Fulbright, Jon ; Pogorzala, David ; Kline, Elizabeth ; Wang, Zhipeng ; Yu, Fangfang ; Yoo, Hyelim ; Wu, Xiangqian</creator><creatorcontrib>Fulbright, Jon ; Pogorzala, David ; Kline, Elizabeth ; Wang, Zhipeng ; Yu, Fangfang ; Yoo, Hyelim ; Wu, Xiangqian</creatorcontrib><description>The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration algorithm (named "Predictive Calibration") was introduced as part of the mitigation strategy. We summarize the early evaluation of L1b products created with this modified algorithm. We also describe some of the imagery artifacts sometimes introduced into the GOES-17 ABI L1b data by the Predictive Calibration or other mitigation steps.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1728163749</identifier><identifier>EISBN: 9781728163741</identifier><identifier>DOI: 10.1109/IGARSS39084.2020.9323574</identifier><language>eng</language><publisher>IEEE</publisher><subject>ABI ; Advanced Baseline Imager ; Calibration ; Detectors ; GOES-17 ; Moon ; on-orbit sensor optimization ; Prediction algorithms ; Space vehicles ; Switches ; Temperature measurement</subject><ispartof>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, p.6051-6054</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9323574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9323574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fulbright, Jon</creatorcontrib><creatorcontrib>Pogorzala, David</creatorcontrib><creatorcontrib>Kline, Elizabeth</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Yu, Fangfang</creatorcontrib><creatorcontrib>Yoo, Hyelim</creatorcontrib><creatorcontrib>Wu, Xiangqian</creatorcontrib><title>GOES-17 ABI L1b Product Performance with Predictive Calibration</title><title>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration algorithm (named "Predictive Calibration") was introduced as part of the mitigation strategy. We summarize the early evaluation of L1b products created with this modified algorithm. We also describe some of the imagery artifacts sometimes introduced into the GOES-17 ABI L1b data by the Predictive Calibration or other mitigation steps.</description><subject>ABI</subject><subject>Advanced Baseline Imager</subject><subject>Calibration</subject><subject>Detectors</subject><subject>GOES-17</subject><subject>Moon</subject><subject>on-orbit sensor optimization</subject><subject>Prediction algorithms</subject><subject>Space vehicles</subject><subject>Switches</subject><subject>Temperature measurement</subject><issn>2153-7003</issn><isbn>1728163749</isbn><isbn>9781728163741</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhqMguE2fwJu8QOtJTtq0V1LLrIXChtXrkaQnGNlWSavi2ztwV_8HH3zwM8YFpEJAed821UvfYwmFSiVISEuUmGl1wZZCy0LkqFV5yRZSZJhoALxmy2n6OEEhARbsodms-0RoXj22vBOWb-M4fLmZbyn6MR7M0RH_CfP7SdAQ3By-iddmH2w0cxiPN-zKm_1Et-ddsben9Wv9nHSbpq2rLgkScE4ydN4ZsAMM1nqTkTRIhtCiL8ArpXNbWJ07DbmTWlvrSAmlZS6El4WRuGJ3_91ARLvPGA4m_u7OZ_EPflRJDw</recordid><startdate>20200926</startdate><enddate>20200926</enddate><creator>Fulbright, Jon</creator><creator>Pogorzala, David</creator><creator>Kline, Elizabeth</creator><creator>Wang, Zhipeng</creator><creator>Yu, Fangfang</creator><creator>Yoo, Hyelim</creator><creator>Wu, Xiangqian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20200926</creationdate><title>GOES-17 ABI L1b Product Performance with Predictive Calibration</title><author>Fulbright, Jon ; Pogorzala, David ; Kline, Elizabeth ; Wang, Zhipeng ; Yu, Fangfang ; Yoo, Hyelim ; Wu, Xiangqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-53cfca0bd0dbbfa5e2a3eae3b3f80f4476b8b76c706c277bbce41472611f28a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ABI</topic><topic>Advanced Baseline Imager</topic><topic>Calibration</topic><topic>Detectors</topic><topic>GOES-17</topic><topic>Moon</topic><topic>on-orbit sensor optimization</topic><topic>Prediction algorithms</topic><topic>Space vehicles</topic><topic>Switches</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Fulbright, Jon</creatorcontrib><creatorcontrib>Pogorzala, David</creatorcontrib><creatorcontrib>Kline, Elizabeth</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Yu, Fangfang</creatorcontrib><creatorcontrib>Yoo, Hyelim</creatorcontrib><creatorcontrib>Wu, Xiangqian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fulbright, Jon</au><au>Pogorzala, David</au><au>Kline, Elizabeth</au><au>Wang, Zhipeng</au><au>Yu, Fangfang</au><au>Yoo, Hyelim</au><au>Wu, Xiangqian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GOES-17 ABI L1b Product Performance with Predictive Calibration</atitle><btitle>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2020-09-26</date><risdate>2020</risdate><spage>6051</spage><epage>6054</epage><pages>6051-6054</pages><eissn>2153-7003</eissn><eisbn>1728163749</eisbn><eisbn>9781728163741</eisbn><abstract>The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration algorithm (named "Predictive Calibration") was introduced as part of the mitigation strategy. We summarize the early evaluation of L1b products created with this modified algorithm. We also describe some of the imagery artifacts sometimes introduced into the GOES-17 ABI L1b data by the Predictive Calibration or other mitigation steps.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS39084.2020.9323574</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, p.6051-6054 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_9323574 |
source | IEEE Xplore All Conference Series |
subjects | ABI Advanced Baseline Imager Calibration Detectors GOES-17 Moon on-orbit sensor optimization Prediction algorithms Space vehicles Switches Temperature measurement |
title | GOES-17 ABI L1b Product Performance with Predictive Calibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GOES-17%20ABI%20L1b%20Product%20Performance%20with%20Predictive%20Calibration&rft.btitle=IGARSS%202020%20-%202020%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Fulbright,%20Jon&rft.date=2020-09-26&rft.spage=6051&rft.epage=6054&rft.pages=6051-6054&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS39084.2020.9323574&rft.eisbn=1728163749&rft.eisbn_list=9781728163741&rft_dat=%3Cieee_CHZPO%3E9323574%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-53cfca0bd0dbbfa5e2a3eae3b3f80f4476b8b76c706c277bbce41472611f28a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9323574&rfr_iscdi=true |