Loading…

GOES-17 ABI L1b Product Performance with Predictive Calibration

The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration...

Full description

Saved in:
Bibliographic Details
Main Authors: Fulbright, Jon, Pogorzala, David, Kline, Elizabeth, Wang, Zhipeng, Yu, Fangfang, Yoo, Hyelim, Wu, Xiangqian
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6054
container_issue
container_start_page 6051
container_title
container_volume
creator Fulbright, Jon
Pogorzala, David
Kline, Elizabeth
Wang, Zhipeng
Yu, Fangfang
Yoo, Hyelim
Wu, Xiangqian
description The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration algorithm (named "Predictive Calibration") was introduced as part of the mitigation strategy. We summarize the early evaluation of L1b products created with this modified algorithm. We also describe some of the imagery artifacts sometimes introduced into the GOES-17 ABI L1b data by the Predictive Calibration or other mitigation steps.
doi_str_mv 10.1109/IGARSS39084.2020.9323574
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9323574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9323574</ieee_id><sourcerecordid>9323574</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-53cfca0bd0dbbfa5e2a3eae3b3f80f4476b8b76c706c277bbce41472611f28a23</originalsourceid><addsrcrecordid>eNotj9FKwzAUhqMguE2fwJu8QOtJTtq0V1LLrIXChtXrkaQnGNlWSavi2ztwV_8HH3zwM8YFpEJAed821UvfYwmFSiVISEuUmGl1wZZCy0LkqFV5yRZSZJhoALxmy2n6OEEhARbsodms-0RoXj22vBOWb-M4fLmZbyn6MR7M0RH_CfP7SdAQ3By-iddmH2w0cxiPN-zKm_1Et-ddsben9Wv9nHSbpq2rLgkScE4ydN4ZsAMM1nqTkTRIhtCiL8ArpXNbWJ07DbmTWlvrSAmlZS6El4WRuGJ3_91ARLvPGA4m_u7OZ_EPflRJDw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>GOES-17 ABI L1b Product Performance with Predictive Calibration</title><source>IEEE Xplore All Conference Series</source><creator>Fulbright, Jon ; Pogorzala, David ; Kline, Elizabeth ; Wang, Zhipeng ; Yu, Fangfang ; Yoo, Hyelim ; Wu, Xiangqian</creator><creatorcontrib>Fulbright, Jon ; Pogorzala, David ; Kline, Elizabeth ; Wang, Zhipeng ; Yu, Fangfang ; Yoo, Hyelim ; Wu, Xiangqian</creatorcontrib><description>The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration algorithm (named "Predictive Calibration") was introduced as part of the mitigation strategy. We summarize the early evaluation of L1b products created with this modified algorithm. We also describe some of the imagery artifacts sometimes introduced into the GOES-17 ABI L1b data by the Predictive Calibration or other mitigation steps.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1728163749</identifier><identifier>EISBN: 9781728163741</identifier><identifier>DOI: 10.1109/IGARSS39084.2020.9323574</identifier><language>eng</language><publisher>IEEE</publisher><subject>ABI ; Advanced Baseline Imager ; Calibration ; Detectors ; GOES-17 ; Moon ; on-orbit sensor optimization ; Prediction algorithms ; Space vehicles ; Switches ; Temperature measurement</subject><ispartof>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, p.6051-6054</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9323574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9323574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fulbright, Jon</creatorcontrib><creatorcontrib>Pogorzala, David</creatorcontrib><creatorcontrib>Kline, Elizabeth</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Yu, Fangfang</creatorcontrib><creatorcontrib>Yoo, Hyelim</creatorcontrib><creatorcontrib>Wu, Xiangqian</creatorcontrib><title>GOES-17 ABI L1b Product Performance with Predictive Calibration</title><title>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration algorithm (named "Predictive Calibration") was introduced as part of the mitigation strategy. We summarize the early evaluation of L1b products created with this modified algorithm. We also describe some of the imagery artifacts sometimes introduced into the GOES-17 ABI L1b data by the Predictive Calibration or other mitigation steps.</description><subject>ABI</subject><subject>Advanced Baseline Imager</subject><subject>Calibration</subject><subject>Detectors</subject><subject>GOES-17</subject><subject>Moon</subject><subject>on-orbit sensor optimization</subject><subject>Prediction algorithms</subject><subject>Space vehicles</subject><subject>Switches</subject><subject>Temperature measurement</subject><issn>2153-7003</issn><isbn>1728163749</isbn><isbn>9781728163741</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhqMguE2fwJu8QOtJTtq0V1LLrIXChtXrkaQnGNlWSavi2ztwV_8HH3zwM8YFpEJAed821UvfYwmFSiVISEuUmGl1wZZCy0LkqFV5yRZSZJhoALxmy2n6OEEhARbsodms-0RoXj22vBOWb-M4fLmZbyn6MR7M0RH_CfP7SdAQ3By-iddmH2w0cxiPN-zKm_1Et-ddsben9Wv9nHSbpq2rLgkScE4ydN4ZsAMM1nqTkTRIhtCiL8ArpXNbWJ07DbmTWlvrSAmlZS6El4WRuGJ3_91ARLvPGA4m_u7OZ_EPflRJDw</recordid><startdate>20200926</startdate><enddate>20200926</enddate><creator>Fulbright, Jon</creator><creator>Pogorzala, David</creator><creator>Kline, Elizabeth</creator><creator>Wang, Zhipeng</creator><creator>Yu, Fangfang</creator><creator>Yoo, Hyelim</creator><creator>Wu, Xiangqian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20200926</creationdate><title>GOES-17 ABI L1b Product Performance with Predictive Calibration</title><author>Fulbright, Jon ; Pogorzala, David ; Kline, Elizabeth ; Wang, Zhipeng ; Yu, Fangfang ; Yoo, Hyelim ; Wu, Xiangqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-53cfca0bd0dbbfa5e2a3eae3b3f80f4476b8b76c706c277bbce41472611f28a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ABI</topic><topic>Advanced Baseline Imager</topic><topic>Calibration</topic><topic>Detectors</topic><topic>GOES-17</topic><topic>Moon</topic><topic>on-orbit sensor optimization</topic><topic>Prediction algorithms</topic><topic>Space vehicles</topic><topic>Switches</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Fulbright, Jon</creatorcontrib><creatorcontrib>Pogorzala, David</creatorcontrib><creatorcontrib>Kline, Elizabeth</creatorcontrib><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Yu, Fangfang</creatorcontrib><creatorcontrib>Yoo, Hyelim</creatorcontrib><creatorcontrib>Wu, Xiangqian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fulbright, Jon</au><au>Pogorzala, David</au><au>Kline, Elizabeth</au><au>Wang, Zhipeng</au><au>Yu, Fangfang</au><au>Yoo, Hyelim</au><au>Wu, Xiangqian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>GOES-17 ABI L1b Product Performance with Predictive Calibration</atitle><btitle>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2020-09-26</date><risdate>2020</risdate><spage>6051</spage><epage>6054</epage><pages>6051-6054</pages><eissn>2153-7003</eissn><eisbn>1728163749</eisbn><eisbn>9781728163741</eisbn><abstract>The ABI instrument on GOES-17 suffers from insufficient cooling, resulting in degradation in the L1b radiance products during times of excessive solar heating, partially due to the original calibration algorithm assuming only a slowly-varying thermal state. In 2019 a modification of the calibration algorithm (named "Predictive Calibration") was introduced as part of the mitigation strategy. We summarize the early evaluation of L1b products created with this modified algorithm. We also describe some of the imagery artifacts sometimes introduced into the GOES-17 ABI L1b data by the Predictive Calibration or other mitigation steps.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS39084.2020.9323574</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, p.6051-6054
issn 2153-7003
language eng
recordid cdi_ieee_primary_9323574
source IEEE Xplore All Conference Series
subjects ABI
Advanced Baseline Imager
Calibration
Detectors
GOES-17
Moon
on-orbit sensor optimization
Prediction algorithms
Space vehicles
Switches
Temperature measurement
title GOES-17 ABI L1b Product Performance with Predictive Calibration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=GOES-17%20ABI%20L1b%20Product%20Performance%20with%20Predictive%20Calibration&rft.btitle=IGARSS%202020%20-%202020%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Fulbright,%20Jon&rft.date=2020-09-26&rft.spage=6051&rft.epage=6054&rft.pages=6051-6054&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS39084.2020.9323574&rft.eisbn=1728163749&rft.eisbn_list=9781728163741&rft_dat=%3Cieee_CHZPO%3E9323574%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-53cfca0bd0dbbfa5e2a3eae3b3f80f4476b8b76c706c277bbce41472611f28a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9323574&rfr_iscdi=true