Loading…

A Novel General Semisupervised Deep Learning Framework for Classification and Regression with Remote Sensing Images

Remote sensing image analysis often involves image-level classification and/ or regression. One major problem with remote sensing data is that it is difficult to obtain abundant precise manual annotations to train fully supervised deep networks that have achieved great success in computer vision. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Zhao, Chen, Guangchen, Zhou, Feng, Yang, Bin, Wang, Lili, Liu, Qiong, Chen, Yonghang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1326
container_issue
container_start_page 1323
container_title
container_volume
creator Chen, Zhao
Chen, Guangchen
Zhou, Feng
Yang, Bin
Wang, Lili
Liu, Qiong
Chen, Yonghang
description Remote sensing image analysis often involves image-level classification and/ or regression. One major problem with remote sensing data is that it is difficult to obtain abundant precise manual annotations to train fully supervised deep networks that have achieved great success in computer vision. Therefore, this paper proposes a novel general semisupervised framework (GSF) which only requires a small amount of annotated samples for training. It employs a new hybrid (dis) similarity to characterize different aspects of the images and realizes label propagation while fine- tuning a deep neural network (NN). As shown by the experimental results, GSF outperforms several supervised baselines and state-of-the-art semisupervised models in classification and regression.
doi_str_mv 10.1109/IGARSS39084.2020.9323932
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9323932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9323932</ieee_id><sourcerecordid>9323932</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-d546341954518d7444adfc85d3d7927e82c640155efad4fc5df69cb8f495d7493</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEm3hCbj4BRL8m9jHqtBQqQKphXNl4nUw5E92aMXbY0QPo51vtTuHQQhTklNK9P2mWu72e66JEjkjjOSaM550gea0ZIoWvBT6Es0YlTwrCeHXaB7jZzKKETJDcYmfhyO0uIIegmnxHjofv0cIRx_B4geAEW_BhN73DV4H08FpCF_YDQGvWhOjd742kx96bHqLd9AESMuEJz99JO6GCVJoH__-N51pIN6gK2faCLfnuUBv68fX1VO2fak2q-U284zwKbNSFFxQLYWkypZCCGNdraTlttSsBMXqQhAqJThjhauldYWu35UTWqZzzRfo7j_XA8BhDL4z4edwLoj_Avn5XPM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel General Semisupervised Deep Learning Framework for Classification and Regression with Remote Sensing Images</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Zhao ; Chen, Guangchen ; Zhou, Feng ; Yang, Bin ; Wang, Lili ; Liu, Qiong ; Chen, Yonghang</creator><creatorcontrib>Chen, Zhao ; Chen, Guangchen ; Zhou, Feng ; Yang, Bin ; Wang, Lili ; Liu, Qiong ; Chen, Yonghang</creatorcontrib><description>Remote sensing image analysis often involves image-level classification and/ or regression. One major problem with remote sensing data is that it is difficult to obtain abundant precise manual annotations to train fully supervised deep networks that have achieved great success in computer vision. Therefore, this paper proposes a novel general semisupervised framework (GSF) which only requires a small amount of annotated samples for training. It employs a new hybrid (dis) similarity to characterize different aspects of the images and realizes label propagation while fine- tuning a deep neural network (NN). As shown by the experimental results, GSF outperforms several supervised baselines and state-of-the-art semisupervised models in classification and regression.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1728163749</identifier><identifier>EISBN: 9781728163741</identifier><identifier>DOI: 10.1109/IGARSS39084.2020.9323932</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; classification ; Cyclones ; Estimation ; infrared images ; multispectral images ; regression ; Remote sensing ; Semisupervised ; Task analysis ; Training ; Wind speed</subject><ispartof>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, p.1323-1326</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9323932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9323932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Chen, Guangchen</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Liu, Qiong</creatorcontrib><creatorcontrib>Chen, Yonghang</creatorcontrib><title>A Novel General Semisupervised Deep Learning Framework for Classification and Regression with Remote Sensing Images</title><title>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Remote sensing image analysis often involves image-level classification and/ or regression. One major problem with remote sensing data is that it is difficult to obtain abundant precise manual annotations to train fully supervised deep networks that have achieved great success in computer vision. Therefore, this paper proposes a novel general semisupervised framework (GSF) which only requires a small amount of annotated samples for training. It employs a new hybrid (dis) similarity to characterize different aspects of the images and realizes label propagation while fine- tuning a deep neural network (NN). As shown by the experimental results, GSF outperforms several supervised baselines and state-of-the-art semisupervised models in classification and regression.</description><subject>Artificial neural networks</subject><subject>classification</subject><subject>Cyclones</subject><subject>Estimation</subject><subject>infrared images</subject><subject>multispectral images</subject><subject>regression</subject><subject>Remote sensing</subject><subject>Semisupervised</subject><subject>Task analysis</subject><subject>Training</subject><subject>Wind speed</subject><issn>2153-7003</issn><isbn>1728163749</isbn><isbn>9781728163741</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEm3hCbj4BRL8m9jHqtBQqQKphXNl4nUw5E92aMXbY0QPo51vtTuHQQhTklNK9P2mWu72e66JEjkjjOSaM550gea0ZIoWvBT6Es0YlTwrCeHXaB7jZzKKETJDcYmfhyO0uIIegmnxHjofv0cIRx_B4geAEW_BhN73DV4H08FpCF_YDQGvWhOjd742kx96bHqLd9AESMuEJz99JO6GCVJoH__-N51pIN6gK2faCLfnuUBv68fX1VO2fak2q-U284zwKbNSFFxQLYWkypZCCGNdraTlttSsBMXqQhAqJThjhauldYWu35UTWqZzzRfo7j_XA8BhDL4z4edwLoj_Avn5XPM</recordid><startdate>20200926</startdate><enddate>20200926</enddate><creator>Chen, Zhao</creator><creator>Chen, Guangchen</creator><creator>Zhou, Feng</creator><creator>Yang, Bin</creator><creator>Wang, Lili</creator><creator>Liu, Qiong</creator><creator>Chen, Yonghang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20200926</creationdate><title>A Novel General Semisupervised Deep Learning Framework for Classification and Regression with Remote Sensing Images</title><author>Chen, Zhao ; Chen, Guangchen ; Zhou, Feng ; Yang, Bin ; Wang, Lili ; Liu, Qiong ; Chen, Yonghang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-d546341954518d7444adfc85d3d7927e82c640155efad4fc5df69cb8f495d7493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>classification</topic><topic>Cyclones</topic><topic>Estimation</topic><topic>infrared images</topic><topic>multispectral images</topic><topic>regression</topic><topic>Remote sensing</topic><topic>Semisupervised</topic><topic>Task analysis</topic><topic>Training</topic><topic>Wind speed</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Chen, Guangchen</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Liu, Qiong</creatorcontrib><creatorcontrib>Chen, Yonghang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Zhao</au><au>Chen, Guangchen</au><au>Zhou, Feng</au><au>Yang, Bin</au><au>Wang, Lili</au><au>Liu, Qiong</au><au>Chen, Yonghang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel General Semisupervised Deep Learning Framework for Classification and Regression with Remote Sensing Images</atitle><btitle>IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2020-09-26</date><risdate>2020</risdate><spage>1323</spage><epage>1326</epage><pages>1323-1326</pages><eissn>2153-7003</eissn><eisbn>1728163749</eisbn><eisbn>9781728163741</eisbn><abstract>Remote sensing image analysis often involves image-level classification and/ or regression. One major problem with remote sensing data is that it is difficult to obtain abundant precise manual annotations to train fully supervised deep networks that have achieved great success in computer vision. Therefore, this paper proposes a novel general semisupervised framework (GSF) which only requires a small amount of annotated samples for training. It employs a new hybrid (dis) similarity to characterize different aspects of the images and realizes label propagation while fine- tuning a deep neural network (NN). As shown by the experimental results, GSF outperforms several supervised baselines and state-of-the-art semisupervised models in classification and regression.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS39084.2020.9323932</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, p.1323-1326
issn 2153-7003
language eng
recordid cdi_ieee_primary_9323932
source IEEE Xplore All Conference Series
subjects Artificial neural networks
classification
Cyclones
Estimation
infrared images
multispectral images
regression
Remote sensing
Semisupervised
Task analysis
Training
Wind speed
title A Novel General Semisupervised Deep Learning Framework for Classification and Regression with Remote Sensing Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20General%20Semisupervised%20Deep%20Learning%20Framework%20for%20Classification%20and%20Regression%20with%20Remote%20Sensing%20Images&rft.btitle=IGARSS%202020%20-%202020%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Chen,%20Zhao&rft.date=2020-09-26&rft.spage=1323&rft.epage=1326&rft.pages=1323-1326&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS39084.2020.9323932&rft.eisbn=1728163749&rft.eisbn_list=9781728163741&rft_dat=%3Cieee_CHZPO%3E9323932%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-d546341954518d7444adfc85d3d7927e82c640155efad4fc5df69cb8f495d7493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9323932&rfr_iscdi=true