Loading…
MBIST Supported Multi Step Trim for Reliable eMRAM Sensing
Access Memory) has many attractive properties such as small size, fast operation speed, and good endurance. However, MRAM has a relatively small TMR (Tunneling Magnetoresistance) ratio, which means a small on-off state separation. It is a challenge to set an optimal reference resistance to reliably...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Access Memory) has many attractive properties such as small size, fast operation speed, and good endurance. However, MRAM has a relatively small TMR (Tunneling Magnetoresistance) ratio, which means a small on-off state separation. It is a challenge to set an optimal reference resistance to reliably differentiate "1" and "0" states. Several trimming circuits were suggested in the literature to adjust a reference value and its search range. The trim setting can be controlled manually by user input; however, it consumes huge test time and requires off-chip engineering analysis to search and apply a trim setting for an individual memory array. In this paper, we will discuss the recent silicon results of fully automated trim process leveraging existing MBIST (Memory Built-in Self-Test) resources and new features to accommodate more complicated multi-step reference setting implementation through minor update of an existing MBIST circuit. The proposed MBIST solution uses a minimal number of tests to analyze massive array properties and automatically set complicated multi-step trim settings within a chip without the need for an external tester or manual adjustments. |
---|---|
ISSN: | 2378-2250 |
DOI: | 10.1109/ITC44778.2020.9325218 |