Loading…

An Effective Genetic Algorithm for Solving the Clustered Shortest-Path Tree Problem

The clustered shortest-path tree problem (CluSPTP) is an extension of the classical single-source shortest-path problem, in which, given a graph with the set of nodes partitioned into a predefined, mutually exclusive and exhaustive set of clusters, we are looking for a shortest-path spanning tree fr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.15570-15591
Main Authors: Cosma, Ovidiu, Pop, Petrica C., Zelina, Ioana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-9cb6a9682b3bc09797c5e4a5cf6a81ca52189f1f76dbd666ab0ec4bb3da7e34d3
cites cdi_FETCH-LOGICAL-c478t-9cb6a9682b3bc09797c5e4a5cf6a81ca52189f1f76dbd666ab0ec4bb3da7e34d3
container_end_page 15591
container_issue
container_start_page 15570
container_title IEEE access
container_volume 9
creator Cosma, Ovidiu
Pop, Petrica C.
Zelina, Ioana
description The clustered shortest-path tree problem (CluSPTP) is an extension of the classical single-source shortest-path problem, in which, given a graph with the set of nodes partitioned into a predefined, mutually exclusive and exhaustive set of clusters, we are looking for a shortest-path spanning tree from a given source to all the other nodes of the graph, with the property that each cluster should induce a connected subtree. CluSPTP belongs to the class of generalized combinatorial optimization problems, and, in general, is proved to be a non-deterministic polynomial time hard (NP-hard) problem. In this paper, we propose a novel genetic algorithm (GA), which is designed to fit the challenges of the investigated problem. The main features of our GA are: the use of an innovative representation scheme that allows us to define meaningful genetic operators and the use of a hybrid initial population. Extensive computational results are reported and discussed for two sets of instances: euclidean and non-euclidean. The performance of the proposed algorithm was evaluated on six types of benchmark euclidean instances available in the literature and on six types of non-euclidean instances obtained from the corresponding euclidean ones. The obtained results show an improvement with respect to existing methods from the literature, both in terms of the quality of the achieved solutions and the computation times necessary to obtain them. They demonstrate that our genetic algorithm outperforms all the existing methods from the literature, providing for all the existing benchmark instances the optimal solutions in all 30 independent trials.
doi_str_mv 10.1109/ACCESS.2021.3053295
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9330601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9330601</ieee_id><doaj_id>oai_doaj_org_article_f16243be3edc4983a6329bbf08186159</doaj_id><sourcerecordid>2483239929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9cb6a9682b3bc09797c5e4a5cf6a81ca52189f1f76dbd666ab0ec4bb3da7e34d3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaKgqL9gLwGfO5PcNm0eR5k6EBSqzyFJb7aObtE0E_z3ZnaI9-VeDvec-3GybMbonDEq7xdNs2zbOaeczYGWwGV5ll1xJmQOJYjzf_VldjuOW5qiTlBZXWXtYk-WzqGN_ReSR9xj7C1ZDGsf-rjZEecDaf3w1e_XJG6QNMNhjBiwI-3Gh4hjzF913JC3gEhegzcD7m6yC6eHEW9P-Tp7f1i-NU_588vjqlk857ao6phLa4SWouYGjKWykpUtsdCldULXzOqSs1o65irRmU4IoQ1FWxgDna4Qig6us9Wk23m9VR-h3-nwrbzu1S_gw1rpkM4ZUDkmeAEGATtbyBq0SG8yxqU_1IKVMmndTVofwX8e0llq6w9hn9ZXvKiBg5T82AVTlw1-HAO6v6mMqqMZajJDHc1QJzMSazaxekT8Y0gAKiiDHyKuhQw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483239929</pqid></control><display><type>article</type><title>An Effective Genetic Algorithm for Solving the Clustered Shortest-Path Tree Problem</title><source>IEEE Open Access Journals</source><creator>Cosma, Ovidiu ; Pop, Petrica C. ; Zelina, Ioana</creator><creatorcontrib>Cosma, Ovidiu ; Pop, Petrica C. ; Zelina, Ioana</creatorcontrib><description>The clustered shortest-path tree problem (CluSPTP) is an extension of the classical single-source shortest-path problem, in which, given a graph with the set of nodes partitioned into a predefined, mutually exclusive and exhaustive set of clusters, we are looking for a shortest-path spanning tree from a given source to all the other nodes of the graph, with the property that each cluster should induce a connected subtree. CluSPTP belongs to the class of generalized combinatorial optimization problems, and, in general, is proved to be a non-deterministic polynomial time hard (NP-hard) problem. In this paper, we propose a novel genetic algorithm (GA), which is designed to fit the challenges of the investigated problem. The main features of our GA are: the use of an innovative representation scheme that allows us to define meaningful genetic operators and the use of a hybrid initial population. Extensive computational results are reported and discussed for two sets of instances: euclidean and non-euclidean. The performance of the proposed algorithm was evaluated on six types of benchmark euclidean instances available in the literature and on six types of non-euclidean instances obtained from the corresponding euclidean ones. The obtained results show an improvement with respect to existing methods from the literature, both in terms of the quality of the achieved solutions and the computation times necessary to obtain them. They demonstrate that our genetic algorithm outperforms all the existing methods from the literature, providing for all the existing benchmark instances the optimal solutions in all 30 independent trials.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3053295</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Benchmarks ; clustered shortest-path tree problem ; Clustering algorithms ; Combinatorial analysis ; Evolutionary computation ; Genetic algorithms ; Graph theory ; Nodes ; Optimization ; Polynomials ; Shortest-path problems ; Single-source shortest-path problem ; Sociology ; Statistics</subject><ispartof>IEEE access, 2021, Vol.9, p.15570-15591</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9cb6a9682b3bc09797c5e4a5cf6a81ca52189f1f76dbd666ab0ec4bb3da7e34d3</citedby><cites>FETCH-LOGICAL-c478t-9cb6a9682b3bc09797c5e4a5cf6a81ca52189f1f76dbd666ab0ec4bb3da7e34d3</cites><orcidid>0000-0001-9740-5394 ; 0000-0002-0626-9284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9330601$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cosma, Ovidiu</creatorcontrib><creatorcontrib>Pop, Petrica C.</creatorcontrib><creatorcontrib>Zelina, Ioana</creatorcontrib><title>An Effective Genetic Algorithm for Solving the Clustered Shortest-Path Tree Problem</title><title>IEEE access</title><addtitle>Access</addtitle><description>The clustered shortest-path tree problem (CluSPTP) is an extension of the classical single-source shortest-path problem, in which, given a graph with the set of nodes partitioned into a predefined, mutually exclusive and exhaustive set of clusters, we are looking for a shortest-path spanning tree from a given source to all the other nodes of the graph, with the property that each cluster should induce a connected subtree. CluSPTP belongs to the class of generalized combinatorial optimization problems, and, in general, is proved to be a non-deterministic polynomial time hard (NP-hard) problem. In this paper, we propose a novel genetic algorithm (GA), which is designed to fit the challenges of the investigated problem. The main features of our GA are: the use of an innovative representation scheme that allows us to define meaningful genetic operators and the use of a hybrid initial population. Extensive computational results are reported and discussed for two sets of instances: euclidean and non-euclidean. The performance of the proposed algorithm was evaluated on six types of benchmark euclidean instances available in the literature and on six types of non-euclidean instances obtained from the corresponding euclidean ones. The obtained results show an improvement with respect to existing methods from the literature, both in terms of the quality of the achieved solutions and the computation times necessary to obtain them. They demonstrate that our genetic algorithm outperforms all the existing methods from the literature, providing for all the existing benchmark instances the optimal solutions in all 30 independent trials.</description><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>clustered shortest-path tree problem</subject><subject>Clustering algorithms</subject><subject>Combinatorial analysis</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Graph theory</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Shortest-path problems</subject><subject>Single-source shortest-path problem</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaKgqL9gLwGfO5PcNm0eR5k6EBSqzyFJb7aObtE0E_z3ZnaI9-VeDvec-3GybMbonDEq7xdNs2zbOaeczYGWwGV5ll1xJmQOJYjzf_VldjuOW5qiTlBZXWXtYk-WzqGN_ReSR9xj7C1ZDGsf-rjZEecDaf3w1e_XJG6QNMNhjBiwI-3Gh4hjzF913JC3gEhegzcD7m6yC6eHEW9P-Tp7f1i-NU_588vjqlk857ao6phLa4SWouYGjKWykpUtsdCldULXzOqSs1o65irRmU4IoQ1FWxgDna4Qig6us9Wk23m9VR-h3-nwrbzu1S_gw1rpkM4ZUDkmeAEGATtbyBq0SG8yxqU_1IKVMmndTVofwX8e0llq6w9hn9ZXvKiBg5T82AVTlw1-HAO6v6mMqqMZajJDHc1QJzMSazaxekT8Y0gAKiiDHyKuhQw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Cosma, Ovidiu</creator><creator>Pop, Petrica C.</creator><creator>Zelina, Ioana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9740-5394</orcidid><orcidid>https://orcid.org/0000-0002-0626-9284</orcidid></search><sort><creationdate>2021</creationdate><title>An Effective Genetic Algorithm for Solving the Clustered Shortest-Path Tree Problem</title><author>Cosma, Ovidiu ; Pop, Petrica C. ; Zelina, Ioana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9cb6a9682b3bc09797c5e4a5cf6a81ca52189f1f76dbd666ab0ec4bb3da7e34d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>clustered shortest-path tree problem</topic><topic>Clustering algorithms</topic><topic>Combinatorial analysis</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Graph theory</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Shortest-path problems</topic><topic>Single-source shortest-path problem</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cosma, Ovidiu</creatorcontrib><creatorcontrib>Pop, Petrica C.</creatorcontrib><creatorcontrib>Zelina, Ioana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cosma, Ovidiu</au><au>Pop, Petrica C.</au><au>Zelina, Ioana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Effective Genetic Algorithm for Solving the Clustered Shortest-Path Tree Problem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>15570</spage><epage>15591</epage><pages>15570-15591</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The clustered shortest-path tree problem (CluSPTP) is an extension of the classical single-source shortest-path problem, in which, given a graph with the set of nodes partitioned into a predefined, mutually exclusive and exhaustive set of clusters, we are looking for a shortest-path spanning tree from a given source to all the other nodes of the graph, with the property that each cluster should induce a connected subtree. CluSPTP belongs to the class of generalized combinatorial optimization problems, and, in general, is proved to be a non-deterministic polynomial time hard (NP-hard) problem. In this paper, we propose a novel genetic algorithm (GA), which is designed to fit the challenges of the investigated problem. The main features of our GA are: the use of an innovative representation scheme that allows us to define meaningful genetic operators and the use of a hybrid initial population. Extensive computational results are reported and discussed for two sets of instances: euclidean and non-euclidean. The performance of the proposed algorithm was evaluated on six types of benchmark euclidean instances available in the literature and on six types of non-euclidean instances obtained from the corresponding euclidean ones. The obtained results show an improvement with respect to existing methods from the literature, both in terms of the quality of the achieved solutions and the computation times necessary to obtain them. They demonstrate that our genetic algorithm outperforms all the existing methods from the literature, providing for all the existing benchmark instances the optimal solutions in all 30 independent trials.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3053295</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9740-5394</orcidid><orcidid>https://orcid.org/0000-0002-0626-9284</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.15570-15591
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9330601
source IEEE Open Access Journals
subjects Benchmark testing
Benchmarks
clustered shortest-path tree problem
Clustering algorithms
Combinatorial analysis
Evolutionary computation
Genetic algorithms
Graph theory
Nodes
Optimization
Polynomials
Shortest-path problems
Single-source shortest-path problem
Sociology
Statistics
title An Effective Genetic Algorithm for Solving the Clustered Shortest-Path Tree Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Effective%20Genetic%20Algorithm%20for%20Solving%20the%20Clustered%20Shortest-Path%20Tree%20Problem&rft.jtitle=IEEE%20access&rft.au=Cosma,%20Ovidiu&rft.date=2021&rft.volume=9&rft.spage=15570&rft.epage=15591&rft.pages=15570-15591&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3053295&rft_dat=%3Cproquest_ieee_%3E2483239929%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-9cb6a9682b3bc09797c5e4a5cf6a81ca52189f1f76dbd666ab0ec4bb3da7e34d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483239929&rft_id=info:pmid/&rft_ieee_id=9330601&rfr_iscdi=true