Loading…
Optimal active power flow solutions using a modified Hopfield neural network
The optimal power flow is a general nonlinear programming problem with a nonlinear objective function and nonlinear functional equality and inequality constraints. This paper presents a proposed strategy for optimal active power flow using a modified Hopfield neural network. The objective function i...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optimal power flow is a general nonlinear programming problem with a nonlinear objective function and nonlinear functional equality and inequality constraints. This paper presents a proposed strategy for optimal active power flow using a modified Hopfield neural network. The objective function is the incremental generation cost function in quadratic form which is expanded in a second-order Taylor series. The equality and inequality constraints are modelled using a linearized network and appended to the objective function using suitable penalty functions to form an augmented cost function. The Hopfield neural network was simulated on a digital computer for fourteen-bus and thirty-bus test system. The optimal solution obtained using this approach is comparable to the solution obtained using the conventional method. |
---|---|
ISSN: | 0840-7789 2576-7046 |
DOI: | 10.1109/CCECE.2001.933681 |