Loading…

MixGAIL: Autonomous Driving Using Demonstrations with Mixed Qualities

In this paper, we consider autonomous driving of a vehicle using imitation learning. Generative adversarial imitation learning (GAIL) is a widely used algorithm for imitation learning. This algorithm leverages positive demonstrations to imitate the behavior of an expert. In this paper, we propose a...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee, Gunmin, Kim, Dohyeong, Oh, Wooseok, Lee, Kyungjae, Oh, Songhwai
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider autonomous driving of a vehicle using imitation learning. Generative adversarial imitation learning (GAIL) is a widely used algorithm for imitation learning. This algorithm leverages positive demonstrations to imitate the behavior of an expert. In this paper, we propose a novel method, called mixed generative adversarial imitation learning (MixGAIL), which incorporates both of expert demonstrations and negative demonstrations, such as vehicle collisions. To this end, the proposed method utilizes an occupancy measure and a constraint function. The occupancy measure is used to follow expert demonstrations and provides a positive feedback. On the other hand, the constraint function is used for negative demonstrations to assert a negative feedback. Experimental results show that the proposed algorithm converges faster than the other baseline methods. Also, hardware experiments using a real-world RC car shows an outstanding performance and faster convergence compared with existing methods.
ISSN:2153-0866
DOI:10.1109/IROS45743.2020.9341104