Loading…
Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items
A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9666 |
container_issue | |
container_start_page | 9659 |
container_title | |
container_volume | |
creator | Gordon, Ethan K. Meng, Xiang Bhattacharjee, Tapomayukh Barnes, Matt Srinivasa, Siddhartha S. |
description | A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies for successful bite acquisition. Therefore, a key challenge is how to handle previously unseen food items with very different success rate distributions over strategy. Combining low-level controllers and planners into discrete action trajectories, we show that the problem can be represented using a linear contextual bandit setting. We construct a simulated environment using a doubly robust loss estimate from previously seen food items, which we use to tune the parameters of off-the-shelf contextual bandit algorithms. Finally, we demonstrate empirically on a robot- assisted feeding system that, even starting with a model trained on thousands of skewering attempts on dissimilar previously seen food items, e-greedy and LinUCB algorithms can quickly converge to the most successful manipulation strategy. |
doi_str_mv | 10.1109/IROS45743.2020.9341359 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9341359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9341359</ieee_id><sourcerecordid>9341359</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-20cb30757027fe5dffe322f085d2886612c5398be173ef7d99ad3c73ecc85c833</originalsourceid><addsrcrecordid>eNotkMFKAzEURaMgWGq_QJD8wNSXpJkk7obiaKFQqXZdpsmLRttMTaaV_r0jdnUvZ3HgXkLuGIwZA3M_Wy5eJ1JNxJgDh7EREyakuSAjozRTXLOSM15ekgFnUhSgy_KajHL-BAAGymhTDshH5Zp9F45Il-2m7Yoq55A7dLRGdCG-P9Aq0kXchoh0jk2KPaN1anb406Yv6ttEK_t9COmPvyQ8hvaQtye6ihkx0rptHZ11uMs35Mo324yjcw7Jqn58mz4X88XTbFrNi8BBdAUHuxGgpAKuPErnPQrOPWjpuO4XMG6lMHqDTAn0yhnTOGH7bq2WVgsxJLf_3oCI630Kuyad1udvxC8y01lh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items</title><source>IEEE Xplore All Conference Series</source><creator>Gordon, Ethan K. ; Meng, Xiang ; Bhattacharjee, Tapomayukh ; Barnes, Matt ; Srinivasa, Siddhartha S.</creator><creatorcontrib>Gordon, Ethan K. ; Meng, Xiang ; Bhattacharjee, Tapomayukh ; Barnes, Matt ; Srinivasa, Siddhartha S.</creatorcontrib><description>A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies for successful bite acquisition. Therefore, a key challenge is how to handle previously unseen food items with very different success rate distributions over strategy. Combining low-level controllers and planners into discrete action trajectories, we show that the problem can be represented using a linear contextual bandit setting. We construct a simulated environment using a doubly robust loss estimate from previously seen food items, which we use to tune the parameters of off-the-shelf contextual bandit algorithms. Finally, we demonstrate empirically on a robot- assisted feeding system that, even starting with a model trained on thousands of skewering attempts on dissimilar previously seen food items, e-greedy and LinUCB algorithms can quickly converge to the most successful manipulation strategy.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781728162126</identifier><identifier>EISBN: 1728162122</identifier><identifier>DOI: 10.1109/IROS45743.2020.9341359</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive systems ; Intelligent robots ; Trajectory ; Visualization</subject><ispartof>2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, p.9659-9666</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9341359$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9341359$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gordon, Ethan K.</creatorcontrib><creatorcontrib>Meng, Xiang</creatorcontrib><creatorcontrib>Bhattacharjee, Tapomayukh</creatorcontrib><creatorcontrib>Barnes, Matt</creatorcontrib><creatorcontrib>Srinivasa, Siddhartha S.</creatorcontrib><title>Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items</title><title>2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies for successful bite acquisition. Therefore, a key challenge is how to handle previously unseen food items with very different success rate distributions over strategy. Combining low-level controllers and planners into discrete action trajectories, we show that the problem can be represented using a linear contextual bandit setting. We construct a simulated environment using a doubly robust loss estimate from previously seen food items, which we use to tune the parameters of off-the-shelf contextual bandit algorithms. Finally, we demonstrate empirically on a robot- assisted feeding system that, even starting with a model trained on thousands of skewering attempts on dissimilar previously seen food items, e-greedy and LinUCB algorithms can quickly converge to the most successful manipulation strategy.</description><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Intelligent robots</subject><subject>Trajectory</subject><subject>Visualization</subject><issn>2153-0866</issn><isbn>9781728162126</isbn><isbn>1728162122</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFKAzEURaMgWGq_QJD8wNSXpJkk7obiaKFQqXZdpsmLRttMTaaV_r0jdnUvZ3HgXkLuGIwZA3M_Wy5eJ1JNxJgDh7EREyakuSAjozRTXLOSM15ekgFnUhSgy_KajHL-BAAGymhTDshH5Zp9F45Il-2m7Yoq55A7dLRGdCG-P9Aq0kXchoh0jk2KPaN1anb406Yv6ttEK_t9COmPvyQ8hvaQtye6ihkx0rptHZ11uMs35Mo324yjcw7Jqn58mz4X88XTbFrNi8BBdAUHuxGgpAKuPErnPQrOPWjpuO4XMG6lMHqDTAn0yhnTOGH7bq2WVgsxJLf_3oCI630Kuyad1udvxC8y01lh</recordid><startdate>20201024</startdate><enddate>20201024</enddate><creator>Gordon, Ethan K.</creator><creator>Meng, Xiang</creator><creator>Bhattacharjee, Tapomayukh</creator><creator>Barnes, Matt</creator><creator>Srinivasa, Siddhartha S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20201024</creationdate><title>Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items</title><author>Gordon, Ethan K. ; Meng, Xiang ; Bhattacharjee, Tapomayukh ; Barnes, Matt ; Srinivasa, Siddhartha S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-20cb30757027fe5dffe322f085d2886612c5398be173ef7d99ad3c73ecc85c833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Intelligent robots</topic><topic>Trajectory</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Ethan K.</creatorcontrib><creatorcontrib>Meng, Xiang</creatorcontrib><creatorcontrib>Bhattacharjee, Tapomayukh</creatorcontrib><creatorcontrib>Barnes, Matt</creatorcontrib><creatorcontrib>Srinivasa, Siddhartha S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)【Remote access available】</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gordon, Ethan K.</au><au>Meng, Xiang</au><au>Bhattacharjee, Tapomayukh</au><au>Barnes, Matt</au><au>Srinivasa, Siddhartha S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items</atitle><btitle>2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2020-10-24</date><risdate>2020</risdate><spage>9659</spage><epage>9666</epage><pages>9659-9666</pages><eissn>2153-0866</eissn><eisbn>9781728162126</eisbn><eisbn>1728162122</eisbn><abstract>A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies for successful bite acquisition. Therefore, a key challenge is how to handle previously unseen food items with very different success rate distributions over strategy. Combining low-level controllers and planners into discrete action trajectories, we show that the problem can be represented using a linear contextual bandit setting. We construct a simulated environment using a doubly robust loss estimate from previously seen food items, which we use to tune the parameters of off-the-shelf contextual bandit algorithms. Finally, we demonstrate empirically on a robot- assisted feeding system that, even starting with a model trained on thousands of skewering attempts on dissimilar previously seen food items, e-greedy and LinUCB algorithms can quickly converge to the most successful manipulation strategy.</abstract><pub>IEEE</pub><doi>10.1109/IROS45743.2020.9341359</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0866 |
ispartof | 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, p.9659-9666 |
issn | 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_9341359 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Adaptive systems Intelligent robots Trajectory Visualization |
title | Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Robot-Assisted%20Feeding:%20An%20Online%20Learning%20Framework%20for%20Acquiring%20Previously%20Unseen%20Food%20Items&rft.btitle=2020%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Gordon,%20Ethan%20K.&rft.date=2020-10-24&rft.spage=9659&rft.epage=9666&rft.pages=9659-9666&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS45743.2020.9341359&rft.eisbn=9781728162126&rft.eisbn_list=1728162122&rft_dat=%3Cieee_CHZPO%3E9341359%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-20cb30757027fe5dffe322f085d2886612c5398be173ef7d99ad3c73ecc85c833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9341359&rfr_iscdi=true |