Loading…

Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items

A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies...

Full description

Saved in:
Bibliographic Details
Main Authors: Gordon, Ethan K., Meng, Xiang, Bhattacharjee, Tapomayukh, Barnes, Matt, Srinivasa, Siddhartha S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9666
container_issue
container_start_page 9659
container_title
container_volume
creator Gordon, Ethan K.
Meng, Xiang
Bhattacharjee, Tapomayukh
Barnes, Matt
Srinivasa, Siddhartha S.
description A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies for successful bite acquisition. Therefore, a key challenge is how to handle previously unseen food items with very different success rate distributions over strategy. Combining low-level controllers and planners into discrete action trajectories, we show that the problem can be represented using a linear contextual bandit setting. We construct a simulated environment using a doubly robust loss estimate from previously seen food items, which we use to tune the parameters of off-the-shelf contextual bandit algorithms. Finally, we demonstrate empirically on a robot- assisted feeding system that, even starting with a model trained on thousands of skewering attempts on dissimilar previously seen food items, e-greedy and LinUCB algorithms can quickly converge to the most successful manipulation strategy.
doi_str_mv 10.1109/IROS45743.2020.9341359
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9341359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9341359</ieee_id><sourcerecordid>9341359</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-20cb30757027fe5dffe322f085d2886612c5398be173ef7d99ad3c73ecc85c833</originalsourceid><addsrcrecordid>eNotkMFKAzEURaMgWGq_QJD8wNSXpJkk7obiaKFQqXZdpsmLRttMTaaV_r0jdnUvZ3HgXkLuGIwZA3M_Wy5eJ1JNxJgDh7EREyakuSAjozRTXLOSM15ekgFnUhSgy_KajHL-BAAGymhTDshH5Zp9F45Il-2m7Yoq55A7dLRGdCG-P9Aq0kXchoh0jk2KPaN1anb406Yv6ttEK_t9COmPvyQ8hvaQtye6ihkx0rptHZ11uMs35Mo324yjcw7Jqn58mz4X88XTbFrNi8BBdAUHuxGgpAKuPErnPQrOPWjpuO4XMG6lMHqDTAn0yhnTOGH7bq2WVgsxJLf_3oCI630Kuyad1udvxC8y01lh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items</title><source>IEEE Xplore All Conference Series</source><creator>Gordon, Ethan K. ; Meng, Xiang ; Bhattacharjee, Tapomayukh ; Barnes, Matt ; Srinivasa, Siddhartha S.</creator><creatorcontrib>Gordon, Ethan K. ; Meng, Xiang ; Bhattacharjee, Tapomayukh ; Barnes, Matt ; Srinivasa, Siddhartha S.</creatorcontrib><description>A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies for successful bite acquisition. Therefore, a key challenge is how to handle previously unseen food items with very different success rate distributions over strategy. Combining low-level controllers and planners into discrete action trajectories, we show that the problem can be represented using a linear contextual bandit setting. We construct a simulated environment using a doubly robust loss estimate from previously seen food items, which we use to tune the parameters of off-the-shelf contextual bandit algorithms. Finally, we demonstrate empirically on a robot- assisted feeding system that, even starting with a model trained on thousands of skewering attempts on dissimilar previously seen food items, e-greedy and LinUCB algorithms can quickly converge to the most successful manipulation strategy.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781728162126</identifier><identifier>EISBN: 1728162122</identifier><identifier>DOI: 10.1109/IROS45743.2020.9341359</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive systems ; Intelligent robots ; Trajectory ; Visualization</subject><ispartof>2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, p.9659-9666</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9341359$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9341359$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gordon, Ethan K.</creatorcontrib><creatorcontrib>Meng, Xiang</creatorcontrib><creatorcontrib>Bhattacharjee, Tapomayukh</creatorcontrib><creatorcontrib>Barnes, Matt</creatorcontrib><creatorcontrib>Srinivasa, Siddhartha S.</creatorcontrib><title>Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items</title><title>2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies for successful bite acquisition. Therefore, a key challenge is how to handle previously unseen food items with very different success rate distributions over strategy. Combining low-level controllers and planners into discrete action trajectories, we show that the problem can be represented using a linear contextual bandit setting. We construct a simulated environment using a doubly robust loss estimate from previously seen food items, which we use to tune the parameters of off-the-shelf contextual bandit algorithms. Finally, we demonstrate empirically on a robot- assisted feeding system that, even starting with a model trained on thousands of skewering attempts on dissimilar previously seen food items, e-greedy and LinUCB algorithms can quickly converge to the most successful manipulation strategy.</description><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Intelligent robots</subject><subject>Trajectory</subject><subject>Visualization</subject><issn>2153-0866</issn><isbn>9781728162126</isbn><isbn>1728162122</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFKAzEURaMgWGq_QJD8wNSXpJkk7obiaKFQqXZdpsmLRttMTaaV_r0jdnUvZ3HgXkLuGIwZA3M_Wy5eJ1JNxJgDh7EREyakuSAjozRTXLOSM15ekgFnUhSgy_KajHL-BAAGymhTDshH5Zp9F45Il-2m7Yoq55A7dLRGdCG-P9Aq0kXchoh0jk2KPaN1anb406Yv6ttEK_t9COmPvyQ8hvaQtye6ihkx0rptHZ11uMs35Mo324yjcw7Jqn58mz4X88XTbFrNi8BBdAUHuxGgpAKuPErnPQrOPWjpuO4XMG6lMHqDTAn0yhnTOGH7bq2WVgsxJLf_3oCI630Kuyad1udvxC8y01lh</recordid><startdate>20201024</startdate><enddate>20201024</enddate><creator>Gordon, Ethan K.</creator><creator>Meng, Xiang</creator><creator>Bhattacharjee, Tapomayukh</creator><creator>Barnes, Matt</creator><creator>Srinivasa, Siddhartha S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20201024</creationdate><title>Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items</title><author>Gordon, Ethan K. ; Meng, Xiang ; Bhattacharjee, Tapomayukh ; Barnes, Matt ; Srinivasa, Siddhartha S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-20cb30757027fe5dffe322f085d2886612c5398be173ef7d99ad3c73ecc85c833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Intelligent robots</topic><topic>Trajectory</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Ethan K.</creatorcontrib><creatorcontrib>Meng, Xiang</creatorcontrib><creatorcontrib>Bhattacharjee, Tapomayukh</creatorcontrib><creatorcontrib>Barnes, Matt</creatorcontrib><creatorcontrib>Srinivasa, Siddhartha S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)【Remote access available】</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gordon, Ethan K.</au><au>Meng, Xiang</au><au>Bhattacharjee, Tapomayukh</au><au>Barnes, Matt</au><au>Srinivasa, Siddhartha S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items</atitle><btitle>2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2020-10-24</date><risdate>2020</risdate><spage>9659</spage><epage>9666</epage><pages>9659-9666</pages><eissn>2153-0866</eissn><eisbn>9781728162126</eisbn><eisbn>1728162122</eisbn><abstract>A successful robot-assisted feeding system requires bite acquisition of a wide variety of food items. It must adapt to changing user food preferences under uncertain visual and physical environments. Different food items in different environmental conditions require different manipulation strategies for successful bite acquisition. Therefore, a key challenge is how to handle previously unseen food items with very different success rate distributions over strategy. Combining low-level controllers and planners into discrete action trajectories, we show that the problem can be represented using a linear contextual bandit setting. We construct a simulated environment using a doubly robust loss estimate from previously seen food items, which we use to tune the parameters of off-the-shelf contextual bandit algorithms. Finally, we demonstrate empirically on a robot- assisted feeding system that, even starting with a model trained on thousands of skewering attempts on dissimilar previously seen food items, e-greedy and LinUCB algorithms can quickly converge to the most successful manipulation strategy.</abstract><pub>IEEE</pub><doi>10.1109/IROS45743.2020.9341359</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-0866
ispartof 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, p.9659-9666
issn 2153-0866
language eng
recordid cdi_ieee_primary_9341359
source IEEE Xplore All Conference Series
subjects Adaptation models
Adaptive systems
Intelligent robots
Trajectory
Visualization
title Adaptive Robot-Assisted Feeding: An Online Learning Framework for Acquiring Previously Unseen Food Items
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Robot-Assisted%20Feeding:%20An%20Online%20Learning%20Framework%20for%20Acquiring%20Previously%20Unseen%20Food%20Items&rft.btitle=2020%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Gordon,%20Ethan%20K.&rft.date=2020-10-24&rft.spage=9659&rft.epage=9666&rft.pages=9659-9666&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS45743.2020.9341359&rft.eisbn=9781728162126&rft.eisbn_list=1728162122&rft_dat=%3Cieee_CHZPO%3E9341359%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-20cb30757027fe5dffe322f085d2886612c5398be173ef7d99ad3c73ecc85c833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9341359&rfr_iscdi=true