Loading…

Twitter sentiment analysis using deep learning models

Twitter is a massive repository and a gold mine of human thoughts that expresses a person's instant feeling. A retrospective review of tweets during the ensuing COVID-19 pandemic may provide valuable insights into the understanding of a person's feelings. With an enormous amount of data, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Roy, Arnab, Ojha, Muneendra
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Roy, Arnab
Ojha, Muneendra
description Twitter is a massive repository and a gold mine of human thoughts that expresses a person's instant feeling. A retrospective review of tweets during the ensuing COVID-19 pandemic may provide valuable insights into the understanding of a person's feelings. With an enormous amount of data, training a model to understand the precise feeling is a daunting job. There are many developments recorded in the field of deep learning to pave the way forward. The purpose of this paper is to compare the tweet sentiment classification using Google BERT, attention based Bidirectional LSTM and Convolutional Neural Networks (CNNs). The final models are trained on the Twitter dataset SemEval-2016, where the embeddings are fine-tuned again. Such models proved to be highly effective and accurate in the study of emotions as opposed to machine learning techniques.
doi_str_mv 10.1109/INDICON49873.2020.9342279
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9342279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9342279</ieee_id><sourcerecordid>9342279</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-76cbc5a1f854ef33958b362ba6fe21a5e316cf544e6191838f5c8c1182b5e63f3</originalsourceid><addsrcrecordid>eNotj1FLwzAUhaMwcM79Al_iD2jNzU3S5FGqzsLYXibsbaTdjUTaOpqK7N9bcS_ncOA7Bw5jDyByAOEeq81zVW43ytkCcymkyB0qKQt3xW6hkBaMA7O_ZnOJUmdOgb1hy5Q-hZhYAaDVnOndTxxHGniifozdJNz3vj2nmPh3iv0HPxKdeEt-6P9S93WkNt2xWfBtouXFF-z99WVXvmXr7aoqn9ZZBLBjVpimbrSHYLWigOi0rdHI2ptAErwmBNMErRQZcGDRBt3YZqrKWpPBgAt2_78biehwGmLnh_Ph8hJ_AZozR80</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Twitter sentiment analysis using deep learning models</title><source>IEEE Xplore All Conference Series</source><creator>Roy, Arnab ; Ojha, Muneendra</creator><creatorcontrib>Roy, Arnab ; Ojha, Muneendra</creatorcontrib><description>Twitter is a massive repository and a gold mine of human thoughts that expresses a person's instant feeling. A retrospective review of tweets during the ensuing COVID-19 pandemic may provide valuable insights into the understanding of a person's feelings. With an enormous amount of data, training a model to understand the precise feeling is a daunting job. There are many developments recorded in the field of deep learning to pave the way forward. The purpose of this paper is to compare the tweet sentiment classification using Google BERT, attention based Bidirectional LSTM and Convolutional Neural Networks (CNNs). The final models are trained on the Twitter dataset SemEval-2016, where the embeddings are fine-tuned again. Such models proved to be highly effective and accurate in the study of emotions as opposed to machine learning techniques.</description><identifier>EISSN: 2325-9418</identifier><identifier>EISBN: 172816916X</identifier><identifier>EISBN: 9781728169163</identifier><identifier>DOI: 10.1109/INDICON49873.2020.9342279</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Attention based Bidirectional LSTM ; BERT ; Blogs ; Data models ; Deep learning ; Internet ; Sentiment analysis ; Social networking (online) ; Twitter Data</subject><ispartof>2020 IEEE 17th India Council International Conference (INDICON), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9342279$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9342279$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, Arnab</creatorcontrib><creatorcontrib>Ojha, Muneendra</creatorcontrib><title>Twitter sentiment analysis using deep learning models</title><title>2020 IEEE 17th India Council International Conference (INDICON)</title><addtitle>INDICON</addtitle><description>Twitter is a massive repository and a gold mine of human thoughts that expresses a person's instant feeling. A retrospective review of tweets during the ensuing COVID-19 pandemic may provide valuable insights into the understanding of a person's feelings. With an enormous amount of data, training a model to understand the precise feeling is a daunting job. There are many developments recorded in the field of deep learning to pave the way forward. The purpose of this paper is to compare the tweet sentiment classification using Google BERT, attention based Bidirectional LSTM and Convolutional Neural Networks (CNNs). The final models are trained on the Twitter dataset SemEval-2016, where the embeddings are fine-tuned again. Such models proved to be highly effective and accurate in the study of emotions as opposed to machine learning techniques.</description><subject>Analytical models</subject><subject>Attention based Bidirectional LSTM</subject><subject>BERT</subject><subject>Blogs</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Internet</subject><subject>Sentiment analysis</subject><subject>Social networking (online)</subject><subject>Twitter Data</subject><issn>2325-9418</issn><isbn>172816916X</isbn><isbn>9781728169163</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhaMwcM79Al_iD2jNzU3S5FGqzsLYXibsbaTdjUTaOpqK7N9bcS_ncOA7Bw5jDyByAOEeq81zVW43ytkCcymkyB0qKQt3xW6hkBaMA7O_ZnOJUmdOgb1hy5Q-hZhYAaDVnOndTxxHGniifozdJNz3vj2nmPh3iv0HPxKdeEt-6P9S93WkNt2xWfBtouXFF-z99WVXvmXr7aoqn9ZZBLBjVpimbrSHYLWigOi0rdHI2ptAErwmBNMErRQZcGDRBt3YZqrKWpPBgAt2_78biehwGmLnh_Ph8hJ_AZozR80</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Roy, Arnab</creator><creator>Ojha, Muneendra</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20201210</creationdate><title>Twitter sentiment analysis using deep learning models</title><author>Roy, Arnab ; Ojha, Muneendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-76cbc5a1f854ef33958b362ba6fe21a5e316cf544e6191838f5c8c1182b5e63f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Attention based Bidirectional LSTM</topic><topic>BERT</topic><topic>Blogs</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Internet</topic><topic>Sentiment analysis</topic><topic>Social networking (online)</topic><topic>Twitter Data</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Arnab</creatorcontrib><creatorcontrib>Ojha, Muneendra</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Arnab</au><au>Ojha, Muneendra</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Twitter sentiment analysis using deep learning models</atitle><btitle>2020 IEEE 17th India Council International Conference (INDICON)</btitle><stitle>INDICON</stitle><date>2020-12-10</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2325-9418</eissn><eisbn>172816916X</eisbn><eisbn>9781728169163</eisbn><abstract>Twitter is a massive repository and a gold mine of human thoughts that expresses a person's instant feeling. A retrospective review of tweets during the ensuing COVID-19 pandemic may provide valuable insights into the understanding of a person's feelings. With an enormous amount of data, training a model to understand the precise feeling is a daunting job. There are many developments recorded in the field of deep learning to pave the way forward. The purpose of this paper is to compare the tweet sentiment classification using Google BERT, attention based Bidirectional LSTM and Convolutional Neural Networks (CNNs). The final models are trained on the Twitter dataset SemEval-2016, where the embeddings are fine-tuned again. Such models proved to be highly effective and accurate in the study of emotions as opposed to machine learning techniques.</abstract><pub>IEEE</pub><doi>10.1109/INDICON49873.2020.9342279</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2325-9418
ispartof 2020 IEEE 17th India Council International Conference (INDICON), 2020, p.1-6
issn 2325-9418
language eng
recordid cdi_ieee_primary_9342279
source IEEE Xplore All Conference Series
subjects Analytical models
Attention based Bidirectional LSTM
BERT
Blogs
Data models
Deep learning
Internet
Sentiment analysis
Social networking (online)
Twitter Data
title Twitter sentiment analysis using deep learning models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Twitter%20sentiment%20analysis%20using%20deep%20learning%20models&rft.btitle=2020%20IEEE%2017th%20India%20Council%20International%20Conference%20(INDICON)&rft.au=Roy,%20Arnab&rft.date=2020-12-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2325-9418&rft_id=info:doi/10.1109/INDICON49873.2020.9342279&rft.eisbn=172816916X&rft.eisbn_list=9781728169163&rft_dat=%3Cieee_CHZPO%3E9342279%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-76cbc5a1f854ef33958b362ba6fe21a5e316cf544e6191838f5c8c1182b5e63f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9342279&rfr_iscdi=true