Loading…
Investigation of an Opportunity of Using 2G HTS Tapes for High-Current Cables With a Current-Carrying Capacity More Than 10 kA
There had been considered optimized design versions of high-current three-phase HTS cables with 2G HTS tapes as current-carrying elements. Their characteristics (rms phase current 12 kA, line voltage 24 kV) conform to the parameters required for the first stage of the power transmission line from th...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2021-08, Vol.31 (5), p.1-4 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There had been considered optimized design versions of high-current three-phase HTS cables with 2G HTS tapes as current-carrying elements. Their characteristics (rms phase current 12 kA, line voltage 24 kV) conform to the parameters required for the first stage of the power transmission line from the generator to the first step-up transformer. Three types of cables are under consideration: one with screened phases and triaxial and flat, as well. The phase critical current value is taken 21 kA. For all the cables designs are given their exact geometric parameters together with the estimation of AC losses and HTS tapes consumption. It has been shown, that the optimization performed allows keeping up AC loses at a level acceptable for practical applications. The best design versions proposed have the losses within the range of 0.27-0.5 W/m, which are significantly lower than ones caused by the natural heat transfer into the cryostat - about 1-2 W/m, vs. its dimensions. All the cable types with one and the same design modification have an approximately equal level of losses. But triaxial and flat cables have an advantage in HTS tapes consumption. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2021.3058084 |