Loading…

PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions

Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2022-02, Vol.44 (2), p.770-782
Main Authors: Gui, Shupeng, Zhang, Xiangliang, Zhong, Pan, Qiu, Shuang, Wu, Mingrui, Ye, Jieping, Wang, Zhengdao, Liu, Ji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3
cites cdi_FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3
container_end_page 782
container_issue 2
container_start_page 770
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 44
creator Gui, Shupeng
Zhang, Xiangliang
Zhong, Pan
Qiu, Shuang
Wu, Mingrui
Ye, Jieping
Wang, Zhengdao
Liu, Ji
description Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the adaptive flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding method (named PINE ) via a novel notion of partial permutation invariant set function , to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, without losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs.
doi_str_mv 10.1109/TPAMI.2021.3061162
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9361263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9361263</ieee_id><sourcerecordid>2617491513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3</originalsourceid><addsrcrecordid>eNpdkMFu1DAQhi0EokvhBUBClrhwyeLxxI7NrSrbslIpK9FesZxkAq42yWInK_H2eNmlB04jzXzza-Zj7DWIJYCwH-42F1_WSykkLFFoAC2fsAVYtAUqtE_ZQuRWYYw0Z-xFSg9CQKkEPmdniFpmXi_Y9836dvWR3w9hTzH5Lf9EtOOrvqa2DcMP3o2RX0e_-8lvx5YS3wfPNz5OIaMbiv08-SmMA18Pex-DHyb-jSZ-NQ_NoZ1esmed3yZ6darn7P5qdXf5ubj5er2-vLgpGrRqKhSUZFSH0jcoSsDGeFODVaCs6Vo0VJtcDUiqUNeqalALUKDbztaVhAbP2ftj7i6Ov2ZKk-tDami79QONc3KytJjfr7TI6Lv_0IdxjkO-zkkNVWlzMGZKHqkmjilF6twuht7H3w6EO9h3f-27g313sp-X3p6i57qn9nHln-4MvDkCgYgexxY1SI34BwdShpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617491513</pqid></control><display><type>article</type><title>PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions</title><source>IEEE Xplore (Online service)</source><creator>Gui, Shupeng ; Zhang, Xiangliang ; Zhong, Pan ; Qiu, Shuang ; Wu, Mingrui ; Ye, Jieping ; Wang, Zhengdao ; Liu, Ji</creator><creatorcontrib>Gui, Shupeng ; Zhang, Xiangliang ; Zhong, Pan ; Qiu, Shuang ; Wu, Mingrui ; Ye, Jieping ; Wang, Zhengdao ; Liu, Ji</creatorcontrib><description>Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the adaptive flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding method (named PINE ) via a novel notion of partial permutation invariant set function , to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, without losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3061162</identifier><identifier>PMID: 33621166</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregates ; Cognitive tasks ; Embedding ; Games ; Graph embedding ; Graph neural networks ; Graphs ; Invariants ; Laplace equations ; Machine learning ; Matrix decomposition ; Nodes ; partial permutation invariant set function ; Permutations ; Reinforcement learning ; representation learning ; Representations ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.770-782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3</citedby><cites>FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3</cites><orcidid>0000-0002-6569-1960 ; 0000-0003-4744-4680 ; 0000-0002-9651-1061 ; 0000-0002-3574-5665 ; 0000-0002-2972-6580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9361263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33621166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gui, Shupeng</creatorcontrib><creatorcontrib>Zhang, Xiangliang</creatorcontrib><creatorcontrib>Zhong, Pan</creatorcontrib><creatorcontrib>Qiu, Shuang</creatorcontrib><creatorcontrib>Wu, Mingrui</creatorcontrib><creatorcontrib>Ye, Jieping</creatorcontrib><creatorcontrib>Wang, Zhengdao</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><title>PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the adaptive flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding method (named PINE ) via a novel notion of partial permutation invariant set function , to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, without losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs.</description><subject>Aggregates</subject><subject>Cognitive tasks</subject><subject>Embedding</subject><subject>Games</subject><subject>Graph embedding</subject><subject>Graph neural networks</subject><subject>Graphs</subject><subject>Invariants</subject><subject>Laplace equations</subject><subject>Machine learning</subject><subject>Matrix decomposition</subject><subject>Nodes</subject><subject>partial permutation invariant set function</subject><subject>Permutations</subject><subject>Reinforcement learning</subject><subject>representation learning</subject><subject>Representations</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMFu1DAQhi0EokvhBUBClrhwyeLxxI7NrSrbslIpK9FesZxkAq42yWInK_H2eNmlB04jzXzza-Zj7DWIJYCwH-42F1_WSykkLFFoAC2fsAVYtAUqtE_ZQuRWYYw0Z-xFSg9CQKkEPmdniFpmXi_Y9836dvWR3w9hTzH5Lf9EtOOrvqa2DcMP3o2RX0e_-8lvx5YS3wfPNz5OIaMbiv08-SmMA18Pex-DHyb-jSZ-NQ_NoZ1esmed3yZ6darn7P5qdXf5ubj5er2-vLgpGrRqKhSUZFSH0jcoSsDGeFODVaCs6Vo0VJtcDUiqUNeqalALUKDbztaVhAbP2ftj7i6Ov2ZKk-tDami79QONc3KytJjfr7TI6Lv_0IdxjkO-zkkNVWlzMGZKHqkmjilF6twuht7H3w6EO9h3f-27g313sp-X3p6i57qn9nHln-4MvDkCgYgexxY1SI34BwdShpk</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gui, Shupeng</creator><creator>Zhang, Xiangliang</creator><creator>Zhong, Pan</creator><creator>Qiu, Shuang</creator><creator>Wu, Mingrui</creator><creator>Ye, Jieping</creator><creator>Wang, Zhengdao</creator><creator>Liu, Ji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6569-1960</orcidid><orcidid>https://orcid.org/0000-0003-4744-4680</orcidid><orcidid>https://orcid.org/0000-0002-9651-1061</orcidid><orcidid>https://orcid.org/0000-0002-3574-5665</orcidid><orcidid>https://orcid.org/0000-0002-2972-6580</orcidid></search><sort><creationdate>20220201</creationdate><title>PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions</title><author>Gui, Shupeng ; Zhang, Xiangliang ; Zhong, Pan ; Qiu, Shuang ; Wu, Mingrui ; Ye, Jieping ; Wang, Zhengdao ; Liu, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregates</topic><topic>Cognitive tasks</topic><topic>Embedding</topic><topic>Games</topic><topic>Graph embedding</topic><topic>Graph neural networks</topic><topic>Graphs</topic><topic>Invariants</topic><topic>Laplace equations</topic><topic>Machine learning</topic><topic>Matrix decomposition</topic><topic>Nodes</topic><topic>partial permutation invariant set function</topic><topic>Permutations</topic><topic>Reinforcement learning</topic><topic>representation learning</topic><topic>Representations</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Shupeng</creatorcontrib><creatorcontrib>Zhang, Xiangliang</creatorcontrib><creatorcontrib>Zhong, Pan</creatorcontrib><creatorcontrib>Qiu, Shuang</creatorcontrib><creatorcontrib>Wu, Mingrui</creatorcontrib><creatorcontrib>Ye, Jieping</creatorcontrib><creatorcontrib>Wang, Zhengdao</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gui, Shupeng</au><au>Zhang, Xiangliang</au><au>Zhong, Pan</au><au>Qiu, Shuang</au><au>Wu, Mingrui</au><au>Ye, Jieping</au><au>Wang, Zhengdao</au><au>Liu, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>44</volume><issue>2</issue><spage>770</spage><epage>782</epage><pages>770-782</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the adaptive flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding method (named PINE ) via a novel notion of partial permutation invariant set function , to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, without losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33621166</pmid><doi>10.1109/TPAMI.2021.3061162</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6569-1960</orcidid><orcidid>https://orcid.org/0000-0003-4744-4680</orcidid><orcidid>https://orcid.org/0000-0002-9651-1061</orcidid><orcidid>https://orcid.org/0000-0002-3574-5665</orcidid><orcidid>https://orcid.org/0000-0002-2972-6580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.770-782
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_9361263
source IEEE Xplore (Online service)
subjects Aggregates
Cognitive tasks
Embedding
Games
Graph embedding
Graph neural networks
Graphs
Invariants
Laplace equations
Machine learning
Matrix decomposition
Nodes
partial permutation invariant set function
Permutations
Reinforcement learning
representation learning
Representations
Task analysis
title PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PINE:%20Universal%20Deep%20Embedding%20for%20Graph%20Nodes%20via%20Partial%20Permutation%20Invariant%20Set%20Functions&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Gui,%20Shupeng&rft.date=2022-02-01&rft.volume=44&rft.issue=2&rft.spage=770&rft.epage=782&rft.pages=770-782&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3061162&rft_dat=%3Cproquest_ieee_%3E2617491513%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617491513&rft_id=info:pmid/33621166&rft_ieee_id=9361263&rfr_iscdi=true