Loading…
PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions
Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbor...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2022-02, Vol.44 (2), p.770-782 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3 |
container_end_page | 782 |
container_issue | 2 |
container_start_page | 770 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Gui, Shupeng Zhang, Xiangliang Zhong, Pan Qiu, Shuang Wu, Mingrui Ye, Jieping Wang, Zhengdao Liu, Ji |
description | Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the adaptive flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding method (named PINE ) via a novel notion of partial permutation invariant set function , to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, without losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs. |
doi_str_mv | 10.1109/TPAMI.2021.3061162 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9361263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9361263</ieee_id><sourcerecordid>2617491513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3</originalsourceid><addsrcrecordid>eNpdkMFu1DAQhi0EokvhBUBClrhwyeLxxI7NrSrbslIpK9FesZxkAq42yWInK_H2eNmlB04jzXzza-Zj7DWIJYCwH-42F1_WSykkLFFoAC2fsAVYtAUqtE_ZQuRWYYw0Z-xFSg9CQKkEPmdniFpmXi_Y9836dvWR3w9hTzH5Lf9EtOOrvqa2DcMP3o2RX0e_-8lvx5YS3wfPNz5OIaMbiv08-SmMA18Pex-DHyb-jSZ-NQ_NoZ1esmed3yZ6darn7P5qdXf5ubj5er2-vLgpGrRqKhSUZFSH0jcoSsDGeFODVaCs6Vo0VJtcDUiqUNeqalALUKDbztaVhAbP2ftj7i6Ov2ZKk-tDami79QONc3KytJjfr7TI6Lv_0IdxjkO-zkkNVWlzMGZKHqkmjilF6twuht7H3w6EO9h3f-27g313sp-X3p6i57qn9nHln-4MvDkCgYgexxY1SI34BwdShpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617491513</pqid></control><display><type>article</type><title>PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions</title><source>IEEE Xplore (Online service)</source><creator>Gui, Shupeng ; Zhang, Xiangliang ; Zhong, Pan ; Qiu, Shuang ; Wu, Mingrui ; Ye, Jieping ; Wang, Zhengdao ; Liu, Ji</creator><creatorcontrib>Gui, Shupeng ; Zhang, Xiangliang ; Zhong, Pan ; Qiu, Shuang ; Wu, Mingrui ; Ye, Jieping ; Wang, Zhengdao ; Liu, Ji</creatorcontrib><description>Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the adaptive flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding method (named PINE ) via a novel notion of partial permutation invariant set function , to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, without losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3061162</identifier><identifier>PMID: 33621166</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregates ; Cognitive tasks ; Embedding ; Games ; Graph embedding ; Graph neural networks ; Graphs ; Invariants ; Laplace equations ; Machine learning ; Matrix decomposition ; Nodes ; partial permutation invariant set function ; Permutations ; Reinforcement learning ; representation learning ; Representations ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.770-782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3</citedby><cites>FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3</cites><orcidid>0000-0002-6569-1960 ; 0000-0003-4744-4680 ; 0000-0002-9651-1061 ; 0000-0002-3574-5665 ; 0000-0002-2972-6580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9361263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33621166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gui, Shupeng</creatorcontrib><creatorcontrib>Zhang, Xiangliang</creatorcontrib><creatorcontrib>Zhong, Pan</creatorcontrib><creatorcontrib>Qiu, Shuang</creatorcontrib><creatorcontrib>Wu, Mingrui</creatorcontrib><creatorcontrib>Ye, Jieping</creatorcontrib><creatorcontrib>Wang, Zhengdao</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><title>PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the adaptive flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding method (named PINE ) via a novel notion of partial permutation invariant set function , to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, without losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs.</description><subject>Aggregates</subject><subject>Cognitive tasks</subject><subject>Embedding</subject><subject>Games</subject><subject>Graph embedding</subject><subject>Graph neural networks</subject><subject>Graphs</subject><subject>Invariants</subject><subject>Laplace equations</subject><subject>Machine learning</subject><subject>Matrix decomposition</subject><subject>Nodes</subject><subject>partial permutation invariant set function</subject><subject>Permutations</subject><subject>Reinforcement learning</subject><subject>representation learning</subject><subject>Representations</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMFu1DAQhi0EokvhBUBClrhwyeLxxI7NrSrbslIpK9FesZxkAq42yWInK_H2eNmlB04jzXzza-Zj7DWIJYCwH-42F1_WSykkLFFoAC2fsAVYtAUqtE_ZQuRWYYw0Z-xFSg9CQKkEPmdniFpmXi_Y9836dvWR3w9hTzH5Lf9EtOOrvqa2DcMP3o2RX0e_-8lvx5YS3wfPNz5OIaMbiv08-SmMA18Pex-DHyb-jSZ-NQ_NoZ1esmed3yZ6darn7P5qdXf5ubj5er2-vLgpGrRqKhSUZFSH0jcoSsDGeFODVaCs6Vo0VJtcDUiqUNeqalALUKDbztaVhAbP2ftj7i6Ov2ZKk-tDami79QONc3KytJjfr7TI6Lv_0IdxjkO-zkkNVWlzMGZKHqkmjilF6twuht7H3w6EO9h3f-27g313sp-X3p6i57qn9nHln-4MvDkCgYgexxY1SI34BwdShpk</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gui, Shupeng</creator><creator>Zhang, Xiangliang</creator><creator>Zhong, Pan</creator><creator>Qiu, Shuang</creator><creator>Wu, Mingrui</creator><creator>Ye, Jieping</creator><creator>Wang, Zhengdao</creator><creator>Liu, Ji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6569-1960</orcidid><orcidid>https://orcid.org/0000-0003-4744-4680</orcidid><orcidid>https://orcid.org/0000-0002-9651-1061</orcidid><orcidid>https://orcid.org/0000-0002-3574-5665</orcidid><orcidid>https://orcid.org/0000-0002-2972-6580</orcidid></search><sort><creationdate>20220201</creationdate><title>PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions</title><author>Gui, Shupeng ; Zhang, Xiangliang ; Zhong, Pan ; Qiu, Shuang ; Wu, Mingrui ; Ye, Jieping ; Wang, Zhengdao ; Liu, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregates</topic><topic>Cognitive tasks</topic><topic>Embedding</topic><topic>Games</topic><topic>Graph embedding</topic><topic>Graph neural networks</topic><topic>Graphs</topic><topic>Invariants</topic><topic>Laplace equations</topic><topic>Machine learning</topic><topic>Matrix decomposition</topic><topic>Nodes</topic><topic>partial permutation invariant set function</topic><topic>Permutations</topic><topic>Reinforcement learning</topic><topic>representation learning</topic><topic>Representations</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Shupeng</creatorcontrib><creatorcontrib>Zhang, Xiangliang</creatorcontrib><creatorcontrib>Zhong, Pan</creatorcontrib><creatorcontrib>Qiu, Shuang</creatorcontrib><creatorcontrib>Wu, Mingrui</creatorcontrib><creatorcontrib>Ye, Jieping</creatorcontrib><creatorcontrib>Wang, Zhengdao</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gui, Shupeng</au><au>Zhang, Xiangliang</au><au>Zhong, Pan</au><au>Qiu, Shuang</au><au>Wu, Mingrui</au><au>Ye, Jieping</au><au>Wang, Zhengdao</au><au>Liu, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>44</volume><issue>2</issue><spage>770</spage><epage>782</epage><pages>770-782</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Graph node embedding aims at learning a vector representation for all nodes given a graph. It is a central problem in many machine learning tasks (e.g., node classification, recommendation, community detection). The key problem in graph node embedding lies in how to define the dependence to neighbors. Existing approaches specify (either explicitly or implicitly) certain dependencies on neighbors, which may lead to loss of subtle but important structural information within the graph and other dependencies among neighbors. This intrigues us to ask the question: can we design a model to give the adaptive flexibility of dependencies to each node's neighborhood. In this paper, we propose a novel graph node embedding method (named PINE ) via a novel notion of partial permutation invariant set function , to capture any possible dependence. Our method 1) can learn an arbitrary form of the representation function from the neighborhood, without losing any potential dependence structures, and 2) is applicable to both homogeneous and heterogeneous graph embedding, the latter of which is challenged by the diversity of node types. Furthermore, we provide theoretical guarantee for the representation capability of our method for general homogeneous and heterogeneous graphs. Empirical evaluation results on benchmark data sets show that our proposed PINE method outperforms the state-of-the-art approaches on producing node vectors for various learning tasks of both homogeneous and heterogeneous graphs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33621166</pmid><doi>10.1109/TPAMI.2021.3061162</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6569-1960</orcidid><orcidid>https://orcid.org/0000-0003-4744-4680</orcidid><orcidid>https://orcid.org/0000-0002-9651-1061</orcidid><orcidid>https://orcid.org/0000-0002-3574-5665</orcidid><orcidid>https://orcid.org/0000-0002-2972-6580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.770-782 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_9361263 |
source | IEEE Xplore (Online service) |
subjects | Aggregates Cognitive tasks Embedding Games Graph embedding Graph neural networks Graphs Invariants Laplace equations Machine learning Matrix decomposition Nodes partial permutation invariant set function Permutations Reinforcement learning representation learning Representations Task analysis |
title | PINE: Universal Deep Embedding for Graph Nodes via Partial Permutation Invariant Set Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PINE:%20Universal%20Deep%20Embedding%20for%20Graph%20Nodes%20via%20Partial%20Permutation%20Invariant%20Set%20Functions&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Gui,%20Shupeng&rft.date=2022-02-01&rft.volume=44&rft.issue=2&rft.spage=770&rft.epage=782&rft.pages=770-782&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3061162&rft_dat=%3Cproquest_ieee_%3E2617491513%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-514e85f32ac30413c8a8b1951598fd38eb88fd812e736b57c3601516df9b721c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617491513&rft_id=info:pmid/33621166&rft_ieee_id=9361263&rfr_iscdi=true |