Loading…

Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization

Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.3215-3227
Main Authors: Li, Kun, Qin, Yao, Ling, Qiang, Wang, Yingqian, Lin, Zaiping, An, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453
cites cdi_FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453
container_end_page 3227
container_issue
container_start_page 3215
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Li, Kun
Qin, Yao
Ling, Qiang
Wang, Yingqian
Lin, Zaiping
An, Wei
description Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the {k}-nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets.
doi_str_mv 10.1109/JSTARS.2021.3063335
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9371374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9371374</ieee_id><doaj_id>oai_doaj_org_article_12816c464c514350952f078db450e7a0</doaj_id><sourcerecordid>2506605348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453</originalsourceid><addsrcrecordid>eNo9kU9v1DAQxSMEEkvhE_RiiXMWT_wvPq6W0i4qqtQUcbQcZ7x4lW6C7VQtN7452abqaTSj934zo1cU50DXAFR_-d7cbW6bdUUrWDMqGWPiTbGqQEAJgom3xQo00yVwyt8XH1I6UCorpdmq-Ndg78tmGjE-hIQd-Yo4kmZq02gdkm0_pYwxHPfED5FcPc26NKLL0fZkd2_3mMivkH-TTWfHHB6QPPMuHseIKZ367YDeBxfwmMkPm2N4JLtjyMH24a_NYTh-LN552yf89FLPip_fLu62V-X1zeVuu7kuHad1LjsnQFcoPHY1AkAnJFOgXSu50NI7hRUqxlBhq4H7VoFALUF3XCpouWBnxW7hdoM9mDGGexufzGCDeR4McW9szMH1aKCqQTou-byTM0G1qDxVdTdjKCpLZ9bnhTXG4c-EKZvDMMXjfL6pBJWSCsbrWcUWlYtDShH961ag5pSbWXIzp9zMS26z63xxBUR8dej5WaY4-w_1d5UC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506605348</pqid></control><display><type>article</type><title>Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization</title><source>Alma/SFX Local Collection</source><creator>Li, Kun ; Qin, Yao ; Ling, Qiang ; Wang, Yingqian ; Lin, Zaiping ; An, Wei</creator><creatorcontrib>Li, Kun ; Qin, Yao ; Ling, Qiang ; Wang, Yingqian ; Lin, Zaiping ; An, Wei</creatorcontrib><description>Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;{k}&lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3063335</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; Clustering methods ; Datasets ; Deep subspace clustering (DSC) ; Dictionaries ; Feature extraction ; Glossaries ; hyperspectral image (HSI) ; Hyperspectral imaging ; Learning ; Redundancy ; self-expressive ; self-supervised ; Sparse matrices ; subspace clustering (SC) ; Subspaces ; Task analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.3215-3227</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453</citedby><cites>FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453</cites><orcidid>0000-0003-4937-5420 ; 0000-0002-9081-6227 ; 0000-0002-3777-6334 ; 0000-0002-0012-7322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Qin, Yao</creatorcontrib><creatorcontrib>Ling, Qiang</creatorcontrib><creatorcontrib>Wang, Yingqian</creatorcontrib><creatorcontrib>Lin, Zaiping</creatorcontrib><creatorcontrib>An, Wei</creatorcontrib><title>Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;{k}&lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets.</description><subject>Clustering</subject><subject>Clustering methods</subject><subject>Datasets</subject><subject>Deep subspace clustering (DSC)</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>Glossaries</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Learning</subject><subject>Redundancy</subject><subject>self-expressive</subject><subject>self-supervised</subject><subject>Sparse matrices</subject><subject>subspace clustering (SC)</subject><subject>Subspaces</subject><subject>Task analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU9v1DAQxSMEEkvhE_RiiXMWT_wvPq6W0i4qqtQUcbQcZ7x4lW6C7VQtN7452abqaTSj934zo1cU50DXAFR_-d7cbW6bdUUrWDMqGWPiTbGqQEAJgom3xQo00yVwyt8XH1I6UCorpdmq-Ndg78tmGjE-hIQd-Yo4kmZq02gdkm0_pYwxHPfED5FcPc26NKLL0fZkd2_3mMivkH-TTWfHHB6QPPMuHseIKZ367YDeBxfwmMkPm2N4JLtjyMH24a_NYTh-LN552yf89FLPip_fLu62V-X1zeVuu7kuHad1LjsnQFcoPHY1AkAnJFOgXSu50NI7hRUqxlBhq4H7VoFALUF3XCpouWBnxW7hdoM9mDGGexufzGCDeR4McW9szMH1aKCqQTou-byTM0G1qDxVdTdjKCpLZ9bnhTXG4c-EKZvDMMXjfL6pBJWSCsbrWcUWlYtDShH961ag5pSbWXIzp9zMS26z63xxBUR8dej5WaY4-w_1d5UC</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Kun</creator><creator>Qin, Yao</creator><creator>Ling, Qiang</creator><creator>Wang, Yingqian</creator><creator>Lin, Zaiping</creator><creator>An, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4937-5420</orcidid><orcidid>https://orcid.org/0000-0002-9081-6227</orcidid><orcidid>https://orcid.org/0000-0002-3777-6334</orcidid><orcidid>https://orcid.org/0000-0002-0012-7322</orcidid></search><sort><creationdate>2021</creationdate><title>Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization</title><author>Li, Kun ; Qin, Yao ; Ling, Qiang ; Wang, Yingqian ; Lin, Zaiping ; An, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Clustering methods</topic><topic>Datasets</topic><topic>Deep subspace clustering (DSC)</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>Glossaries</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Learning</topic><topic>Redundancy</topic><topic>self-expressive</topic><topic>self-supervised</topic><topic>Sparse matrices</topic><topic>subspace clustering (SC)</topic><topic>Subspaces</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Qin, Yao</creatorcontrib><creatorcontrib>Ling, Qiang</creatorcontrib><creatorcontrib>Wang, Yingqian</creatorcontrib><creatorcontrib>Lin, Zaiping</creatorcontrib><creatorcontrib>An, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kun</au><au>Qin, Yao</au><au>Ling, Qiang</au><au>Wang, Yingqian</au><au>Lin, Zaiping</au><au>An, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>3215</spage><epage>3227</epage><pages>3215-3227</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;{k}&lt;/tex-math&gt;&lt;/inline-formula&gt;-nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3063335</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4937-5420</orcidid><orcidid>https://orcid.org/0000-0002-9081-6227</orcidid><orcidid>https://orcid.org/0000-0002-3777-6334</orcidid><orcidid>https://orcid.org/0000-0002-0012-7322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.3215-3227
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_9371374
source Alma/SFX Local Collection
subjects Clustering
Clustering methods
Datasets
Deep subspace clustering (DSC)
Dictionaries
Feature extraction
Glossaries
hyperspectral image (HSI)
Hyperspectral imaging
Learning
Redundancy
self-expressive
self-supervised
Sparse matrices
subspace clustering (SC)
Subspaces
Task analysis
title Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Deep%20Subspace%20Clustering%20for%20Hyperspectral%20Images%20With%20Adaptive%20Self-Expressive%20Coefficient%20Matrix%20Initialization&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Li,%20Kun&rft.date=2021&rft.volume=14&rft.spage=3215&rft.epage=3227&rft.pages=3215-3227&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3063335&rft_dat=%3Cproquest_ieee_%3E2506605348%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2506605348&rft_id=info:pmid/&rft_ieee_id=9371374&rfr_iscdi=true