Loading…
Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization
Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionar...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.3215-3227 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453 |
container_end_page | 3227 |
container_issue | |
container_start_page | 3215 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Li, Kun Qin, Yao Ling, Qiang Wang, Yingqian Lin, Zaiping An, Wei |
description | Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the {k}-nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets. |
doi_str_mv | 10.1109/JSTARS.2021.3063335 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9371374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9371374</ieee_id><doaj_id>oai_doaj_org_article_12816c464c514350952f078db450e7a0</doaj_id><sourcerecordid>2506605348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453</originalsourceid><addsrcrecordid>eNo9kU9v1DAQxSMEEkvhE_RiiXMWT_wvPq6W0i4qqtQUcbQcZ7x4lW6C7VQtN7452abqaTSj934zo1cU50DXAFR_-d7cbW6bdUUrWDMqGWPiTbGqQEAJgom3xQo00yVwyt8XH1I6UCorpdmq-Ndg78tmGjE-hIQd-Yo4kmZq02gdkm0_pYwxHPfED5FcPc26NKLL0fZkd2_3mMivkH-TTWfHHB6QPPMuHseIKZ367YDeBxfwmMkPm2N4JLtjyMH24a_NYTh-LN552yf89FLPip_fLu62V-X1zeVuu7kuHad1LjsnQFcoPHY1AkAnJFOgXSu50NI7hRUqxlBhq4H7VoFALUF3XCpouWBnxW7hdoM9mDGGexufzGCDeR4McW9szMH1aKCqQTou-byTM0G1qDxVdTdjKCpLZ9bnhTXG4c-EKZvDMMXjfL6pBJWSCsbrWcUWlYtDShH961ag5pSbWXIzp9zMS26z63xxBUR8dej5WaY4-w_1d5UC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506605348</pqid></control><display><type>article</type><title>Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization</title><source>Alma/SFX Local Collection</source><creator>Li, Kun ; Qin, Yao ; Ling, Qiang ; Wang, Yingqian ; Lin, Zaiping ; An, Wei</creator><creatorcontrib>Li, Kun ; Qin, Yao ; Ling, Qiang ; Wang, Yingqian ; Lin, Zaiping ; An, Wei</creatorcontrib><description>Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the <inline-formula><tex-math notation="LaTeX">{k}</tex-math></inline-formula>-nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3063335</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; Clustering methods ; Datasets ; Deep subspace clustering (DSC) ; Dictionaries ; Feature extraction ; Glossaries ; hyperspectral image (HSI) ; Hyperspectral imaging ; Learning ; Redundancy ; self-expressive ; self-supervised ; Sparse matrices ; subspace clustering (SC) ; Subspaces ; Task analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.3215-3227</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453</citedby><cites>FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453</cites><orcidid>0000-0003-4937-5420 ; 0000-0002-9081-6227 ; 0000-0002-3777-6334 ; 0000-0002-0012-7322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Qin, Yao</creatorcontrib><creatorcontrib>Ling, Qiang</creatorcontrib><creatorcontrib>Wang, Yingqian</creatorcontrib><creatorcontrib>Lin, Zaiping</creatorcontrib><creatorcontrib>An, Wei</creatorcontrib><title>Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the <inline-formula><tex-math notation="LaTeX">{k}</tex-math></inline-formula>-nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets.</description><subject>Clustering</subject><subject>Clustering methods</subject><subject>Datasets</subject><subject>Deep subspace clustering (DSC)</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>Glossaries</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Learning</subject><subject>Redundancy</subject><subject>self-expressive</subject><subject>self-supervised</subject><subject>Sparse matrices</subject><subject>subspace clustering (SC)</subject><subject>Subspaces</subject><subject>Task analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU9v1DAQxSMEEkvhE_RiiXMWT_wvPq6W0i4qqtQUcbQcZ7x4lW6C7VQtN7452abqaTSj934zo1cU50DXAFR_-d7cbW6bdUUrWDMqGWPiTbGqQEAJgom3xQo00yVwyt8XH1I6UCorpdmq-Ndg78tmGjE-hIQd-Yo4kmZq02gdkm0_pYwxHPfED5FcPc26NKLL0fZkd2_3mMivkH-TTWfHHB6QPPMuHseIKZ367YDeBxfwmMkPm2N4JLtjyMH24a_NYTh-LN552yf89FLPip_fLu62V-X1zeVuu7kuHad1LjsnQFcoPHY1AkAnJFOgXSu50NI7hRUqxlBhq4H7VoFALUF3XCpouWBnxW7hdoM9mDGGexufzGCDeR4McW9szMH1aKCqQTou-byTM0G1qDxVdTdjKCpLZ9bnhTXG4c-EKZvDMMXjfL6pBJWSCsbrWcUWlYtDShH961ag5pSbWXIzp9zMS26z63xxBUR8dej5WaY4-w_1d5UC</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Kun</creator><creator>Qin, Yao</creator><creator>Ling, Qiang</creator><creator>Wang, Yingqian</creator><creator>Lin, Zaiping</creator><creator>An, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4937-5420</orcidid><orcidid>https://orcid.org/0000-0002-9081-6227</orcidid><orcidid>https://orcid.org/0000-0002-3777-6334</orcidid><orcidid>https://orcid.org/0000-0002-0012-7322</orcidid></search><sort><creationdate>2021</creationdate><title>Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization</title><author>Li, Kun ; Qin, Yao ; Ling, Qiang ; Wang, Yingqian ; Lin, Zaiping ; An, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Clustering methods</topic><topic>Datasets</topic><topic>Deep subspace clustering (DSC)</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>Glossaries</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Learning</topic><topic>Redundancy</topic><topic>self-expressive</topic><topic>self-supervised</topic><topic>Sparse matrices</topic><topic>subspace clustering (SC)</topic><topic>Subspaces</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Qin, Yao</creatorcontrib><creatorcontrib>Ling, Qiang</creatorcontrib><creatorcontrib>Wang, Yingqian</creatorcontrib><creatorcontrib>Lin, Zaiping</creatorcontrib><creatorcontrib>An, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kun</au><au>Qin, Yao</au><au>Ling, Qiang</au><au>Wang, Yingqian</au><au>Lin, Zaiping</au><au>An, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>3215</spage><epage>3227</epage><pages>3215-3227</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy of the global dictionary atoms. In this article, we propose an end-to-end trainable network for HSI clustering. Specifically, to ensure the extracted features are well-suited to subsequent subspace clustering, the cluster assignments with high confidence are employed as pseudo-labels to supervise the feature learning process. Then, an adaptive self-expressive coefficient matrix initialization strategy is designed to reduce the dictionary redundancy, where the spectral similarity between each target sample and its neighbors is modeled via the <inline-formula><tex-math notation="LaTeX">{k}</tex-math></inline-formula>-nearest neighbor graph to guide the initialization. Experimental results on three public HSI datasets demonstrate the effectiveness of the proposed method. In particular, our method outperforms several state-of-the-art HSI clustering methods, and achieves overall accuracy of 100% on both SalinasA and Pavia University datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3063335</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4937-5420</orcidid><orcidid>https://orcid.org/0000-0002-9081-6227</orcidid><orcidid>https://orcid.org/0000-0002-3777-6334</orcidid><orcidid>https://orcid.org/0000-0002-0012-7322</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.3215-3227 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_9371374 |
source | Alma/SFX Local Collection |
subjects | Clustering Clustering methods Datasets Deep subspace clustering (DSC) Dictionaries Feature extraction Glossaries hyperspectral image (HSI) Hyperspectral imaging Learning Redundancy self-expressive self-supervised Sparse matrices subspace clustering (SC) Subspaces Task analysis |
title | Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Deep%20Subspace%20Clustering%20for%20Hyperspectral%20Images%20With%20Adaptive%20Self-Expressive%20Coefficient%20Matrix%20Initialization&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Li,%20Kun&rft.date=2021&rft.volume=14&rft.spage=3215&rft.epage=3227&rft.pages=3215-3227&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3063335&rft_dat=%3Cproquest_ieee_%3E2506605348%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-dc5192e5fed8e111d563719cb64596fc7e2e733e7eb914fb715e9619d4671b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2506605348&rft_id=info:pmid/&rft_ieee_id=9371374&rfr_iscdi=true |