Loading…

Industrial Fault Diagnosis using Hilbert Transform and Texture Features

An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Zabin, Mahe, Choi, Ho-Jin, Uddin, Jia, Furhad, Md. Hasan, Ullah, Abu.Barkat
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 128
container_issue
container_start_page 121
container_title
container_volume
creator Zabin, Mahe
Choi, Ho-Jin
Uddin, Jia
Furhad, Md. Hasan
Ullah, Abu.Barkat
description An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Then as a preprocessing method we utilized Hilbert transform to extract the pre-processed signals with absolute values. After that, texture images are generated from the pre-processed signals. The texture pattern of the images is used for training and testing the deep convolutional neural networks. For analyzing the performance of the proposed system, we used the F1-score which is derived from precision and recall. Experimental results demonstrate that the proposed model exhibited average 98.48% F1 score for the dataset, where HC (98.33%), IRF (98.57%), BF (98.41%), and ORF (98.56%), respectively. In addition, the proposed model shows comparatively higher classification accuracy compared to the four state-of-art models by showing the higher F1 score.
doi_str_mv 10.1109/BigComp51126.2021.00031
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9373237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373237</ieee_id><sourcerecordid>9373237</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-fc755d83f3ad1d5fcee2aa63e3a523e17f965a6e0e5496a35fcecaed72da7d903</originalsourceid><addsrcrecordid>eNotj91KwzAYQKMgOGafwAvzAq1JviVpLrXabTDwpl6Pz-XriPRnJC3o27vhrs7N4cBh7EmKQkrhnl_DsRr7k5ZSmUIJJQshBMgbljlbSqtKWTq1MrdsocDq3IE29yxL6fusSWecsmLB1tvBz2mKATte49xN_C3gcRhTSHxOYTjyTei-KE68iTikdow9x8Hzhn6mORKvCS9MD-yuxS5RduWSfdbvTbXJdx_rbfWyy4MSMOXtwWrtS2gBvfS6PRApRAMEqBWQtK0zGg0J0itnEC7GAclb5dF6J2DJHv-7gYj2pxh6jL97BxbOk_AHoadQRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Industrial Fault Diagnosis using Hilbert Transform and Texture Features</title><source>IEEE Xplore All Conference Series</source><creator>Zabin, Mahe ; Choi, Ho-Jin ; Uddin, Jia ; Furhad, Md. Hasan ; Ullah, Abu.Barkat</creator><creatorcontrib>Zabin, Mahe ; Choi, Ho-Jin ; Uddin, Jia ; Furhad, Md. Hasan ; Ullah, Abu.Barkat</creatorcontrib><description>An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Then as a preprocessing method we utilized Hilbert transform to extract the pre-processed signals with absolute values. After that, texture images are generated from the pre-processed signals. The texture pattern of the images is used for training and testing the deep convolutional neural networks. For analyzing the performance of the proposed system, we used the F1-score which is derived from precision and recall. Experimental results demonstrate that the proposed model exhibited average 98.48% F1 score for the dataset, where HC (98.33%), IRF (98.57%), BF (98.41%), and ORF (98.56%), respectively. In addition, the proposed model shows comparatively higher classification accuracy compared to the four state-of-art models by showing the higher F1 score.</description><identifier>EISSN: 2375-9356</identifier><identifier>EISBN: 9781728189246</identifier><identifier>EISBN: 1728189241</identifier><identifier>DOI: 10.1109/BigComp51126.2021.00031</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Convolution ; Convolutional neural networks ; Data models ; Deep Convolutional Neural Network ; Fault diagnosis ; Hilbert Transform ; Industry 4.0 ; Training ; Transforms</subject><ispartof>2021 IEEE International Conference on Big Data and Smart Computing (BigComp), 2021, p.121-128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zabin, Mahe</creatorcontrib><creatorcontrib>Choi, Ho-Jin</creatorcontrib><creatorcontrib>Uddin, Jia</creatorcontrib><creatorcontrib>Furhad, Md. Hasan</creatorcontrib><creatorcontrib>Ullah, Abu.Barkat</creatorcontrib><title>Industrial Fault Diagnosis using Hilbert Transform and Texture Features</title><title>2021 IEEE International Conference on Big Data and Smart Computing (BigComp)</title><addtitle>BIGCOMP</addtitle><description>An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Then as a preprocessing method we utilized Hilbert transform to extract the pre-processed signals with absolute values. After that, texture images are generated from the pre-processed signals. The texture pattern of the images is used for training and testing the deep convolutional neural networks. For analyzing the performance of the proposed system, we used the F1-score which is derived from precision and recall. Experimental results demonstrate that the proposed model exhibited average 98.48% F1 score for the dataset, where HC (98.33%), IRF (98.57%), BF (98.41%), and ORF (98.56%), respectively. In addition, the proposed model shows comparatively higher classification accuracy compared to the four state-of-art models by showing the higher F1 score.</description><subject>Computational modeling</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Data models</subject><subject>Deep Convolutional Neural Network</subject><subject>Fault diagnosis</subject><subject>Hilbert Transform</subject><subject>Industry 4.0</subject><subject>Training</subject><subject>Transforms</subject><issn>2375-9356</issn><isbn>9781728189246</isbn><isbn>1728189241</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KwzAYQKMgOGafwAvzAq1JviVpLrXabTDwpl6Pz-XriPRnJC3o27vhrs7N4cBh7EmKQkrhnl_DsRr7k5ZSmUIJJQshBMgbljlbSqtKWTq1MrdsocDq3IE29yxL6fusSWecsmLB1tvBz2mKATte49xN_C3gcRhTSHxOYTjyTei-KE68iTikdow9x8Hzhn6mORKvCS9MD-yuxS5RduWSfdbvTbXJdx_rbfWyy4MSMOXtwWrtS2gBvfS6PRApRAMEqBWQtK0zGg0J0itnEC7GAclb5dF6J2DJHv-7gYj2pxh6jL97BxbOk_AHoadQRg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Zabin, Mahe</creator><creator>Choi, Ho-Jin</creator><creator>Uddin, Jia</creator><creator>Furhad, Md. Hasan</creator><creator>Ullah, Abu.Barkat</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202101</creationdate><title>Industrial Fault Diagnosis using Hilbert Transform and Texture Features</title><author>Zabin, Mahe ; Choi, Ho-Jin ; Uddin, Jia ; Furhad, Md. Hasan ; Ullah, Abu.Barkat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-fc755d83f3ad1d5fcee2aa63e3a523e17f965a6e0e5496a35fcecaed72da7d903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational modeling</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Data models</topic><topic>Deep Convolutional Neural Network</topic><topic>Fault diagnosis</topic><topic>Hilbert Transform</topic><topic>Industry 4.0</topic><topic>Training</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Zabin, Mahe</creatorcontrib><creatorcontrib>Choi, Ho-Jin</creatorcontrib><creatorcontrib>Uddin, Jia</creatorcontrib><creatorcontrib>Furhad, Md. Hasan</creatorcontrib><creatorcontrib>Ullah, Abu.Barkat</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zabin, Mahe</au><au>Choi, Ho-Jin</au><au>Uddin, Jia</au><au>Furhad, Md. Hasan</au><au>Ullah, Abu.Barkat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Industrial Fault Diagnosis using Hilbert Transform and Texture Features</atitle><btitle>2021 IEEE International Conference on Big Data and Smart Computing (BigComp)</btitle><stitle>BIGCOMP</stitle><date>2021-01</date><risdate>2021</risdate><spage>121</spage><epage>128</epage><pages>121-128</pages><eissn>2375-9356</eissn><eisbn>9781728189246</eisbn><eisbn>1728189241</eisbn><coden>IEEPAD</coden><abstract>An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Then as a preprocessing method we utilized Hilbert transform to extract the pre-processed signals with absolute values. After that, texture images are generated from the pre-processed signals. The texture pattern of the images is used for training and testing the deep convolutional neural networks. For analyzing the performance of the proposed system, we used the F1-score which is derived from precision and recall. Experimental results demonstrate that the proposed model exhibited average 98.48% F1 score for the dataset, where HC (98.33%), IRF (98.57%), BF (98.41%), and ORF (98.56%), respectively. In addition, the proposed model shows comparatively higher classification accuracy compared to the four state-of-art models by showing the higher F1 score.</abstract><pub>IEEE</pub><doi>10.1109/BigComp51126.2021.00031</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-9356
ispartof 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), 2021, p.121-128
issn 2375-9356
language eng
recordid cdi_ieee_primary_9373237
source IEEE Xplore All Conference Series
subjects Computational modeling
Convolution
Convolutional neural networks
Data models
Deep Convolutional Neural Network
Fault diagnosis
Hilbert Transform
Industry 4.0
Training
Transforms
title Industrial Fault Diagnosis using Hilbert Transform and Texture Features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Industrial%20Fault%20Diagnosis%20using%20Hilbert%20Transform%20and%20Texture%20Features&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Big%20Data%20and%20Smart%20Computing%20(BigComp)&rft.au=Zabin,%20Mahe&rft.date=2021-01&rft.spage=121&rft.epage=128&rft.pages=121-128&rft.eissn=2375-9356&rft.coden=IEEPAD&rft_id=info:doi/10.1109/BigComp51126.2021.00031&rft.eisbn=9781728189246&rft.eisbn_list=1728189241&rft_dat=%3Cieee_CHZPO%3E9373237%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-fc755d83f3ad1d5fcee2aa63e3a523e17f965a6e0e5496a35fcecaed72da7d903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9373237&rfr_iscdi=true