Loading…
Industrial Fault Diagnosis using Hilbert Transform and Texture Features
An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Th...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 128 |
container_issue | |
container_start_page | 121 |
container_title | |
container_volume | |
creator | Zabin, Mahe Choi, Ho-Jin Uddin, Jia Furhad, Md. Hasan Ullah, Abu.Barkat |
description | An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Then as a preprocessing method we utilized Hilbert transform to extract the pre-processed signals with absolute values. After that, texture images are generated from the pre-processed signals. The texture pattern of the images is used for training and testing the deep convolutional neural networks. For analyzing the performance of the proposed system, we used the F1-score which is derived from precision and recall. Experimental results demonstrate that the proposed model exhibited average 98.48% F1 score for the dataset, where HC (98.33%), IRF (98.57%), BF (98.41%), and ORF (98.56%), respectively. In addition, the proposed model shows comparatively higher classification accuracy compared to the four state-of-art models by showing the higher F1 score. |
doi_str_mv | 10.1109/BigComp51126.2021.00031 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9373237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373237</ieee_id><sourcerecordid>9373237</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-fc755d83f3ad1d5fcee2aa63e3a523e17f965a6e0e5496a35fcecaed72da7d903</originalsourceid><addsrcrecordid>eNotj91KwzAYQKMgOGafwAvzAq1JviVpLrXabTDwpl6Pz-XriPRnJC3o27vhrs7N4cBh7EmKQkrhnl_DsRr7k5ZSmUIJJQshBMgbljlbSqtKWTq1MrdsocDq3IE29yxL6fusSWecsmLB1tvBz2mKATte49xN_C3gcRhTSHxOYTjyTei-KE68iTikdow9x8Hzhn6mORKvCS9MD-yuxS5RduWSfdbvTbXJdx_rbfWyy4MSMOXtwWrtS2gBvfS6PRApRAMEqBWQtK0zGg0J0itnEC7GAclb5dF6J2DJHv-7gYj2pxh6jL97BxbOk_AHoadQRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Industrial Fault Diagnosis using Hilbert Transform and Texture Features</title><source>IEEE Xplore All Conference Series</source><creator>Zabin, Mahe ; Choi, Ho-Jin ; Uddin, Jia ; Furhad, Md. Hasan ; Ullah, Abu.Barkat</creator><creatorcontrib>Zabin, Mahe ; Choi, Ho-Jin ; Uddin, Jia ; Furhad, Md. Hasan ; Ullah, Abu.Barkat</creatorcontrib><description>An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Then as a preprocessing method we utilized Hilbert transform to extract the pre-processed signals with absolute values. After that, texture images are generated from the pre-processed signals. The texture pattern of the images is used for training and testing the deep convolutional neural networks. For analyzing the performance of the proposed system, we used the F1-score which is derived from precision and recall. Experimental results demonstrate that the proposed model exhibited average 98.48% F1 score for the dataset, where HC (98.33%), IRF (98.57%), BF (98.41%), and ORF (98.56%), respectively. In addition, the proposed model shows comparatively higher classification accuracy compared to the four state-of-art models by showing the higher F1 score.</description><identifier>EISSN: 2375-9356</identifier><identifier>EISBN: 9781728189246</identifier><identifier>EISBN: 1728189241</identifier><identifier>DOI: 10.1109/BigComp51126.2021.00031</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Convolution ; Convolutional neural networks ; Data models ; Deep Convolutional Neural Network ; Fault diagnosis ; Hilbert Transform ; Industry 4.0 ; Training ; Transforms</subject><ispartof>2021 IEEE International Conference on Big Data and Smart Computing (BigComp), 2021, p.121-128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zabin, Mahe</creatorcontrib><creatorcontrib>Choi, Ho-Jin</creatorcontrib><creatorcontrib>Uddin, Jia</creatorcontrib><creatorcontrib>Furhad, Md. Hasan</creatorcontrib><creatorcontrib>Ullah, Abu.Barkat</creatorcontrib><title>Industrial Fault Diagnosis using Hilbert Transform and Texture Features</title><title>2021 IEEE International Conference on Big Data and Smart Computing (BigComp)</title><addtitle>BIGCOMP</addtitle><description>An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Then as a preprocessing method we utilized Hilbert transform to extract the pre-processed signals with absolute values. After that, texture images are generated from the pre-processed signals. The texture pattern of the images is used for training and testing the deep convolutional neural networks. For analyzing the performance of the proposed system, we used the F1-score which is derived from precision and recall. Experimental results demonstrate that the proposed model exhibited average 98.48% F1 score for the dataset, where HC (98.33%), IRF (98.57%), BF (98.41%), and ORF (98.56%), respectively. In addition, the proposed model shows comparatively higher classification accuracy compared to the four state-of-art models by showing the higher F1 score.</description><subject>Computational modeling</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Data models</subject><subject>Deep Convolutional Neural Network</subject><subject>Fault diagnosis</subject><subject>Hilbert Transform</subject><subject>Industry 4.0</subject><subject>Training</subject><subject>Transforms</subject><issn>2375-9356</issn><isbn>9781728189246</isbn><isbn>1728189241</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KwzAYQKMgOGafwAvzAq1JviVpLrXabTDwpl6Pz-XriPRnJC3o27vhrs7N4cBh7EmKQkrhnl_DsRr7k5ZSmUIJJQshBMgbljlbSqtKWTq1MrdsocDq3IE29yxL6fusSWecsmLB1tvBz2mKATte49xN_C3gcRhTSHxOYTjyTei-KE68iTikdow9x8Hzhn6mORKvCS9MD-yuxS5RduWSfdbvTbXJdx_rbfWyy4MSMOXtwWrtS2gBvfS6PRApRAMEqBWQtK0zGg0J0itnEC7GAclb5dF6J2DJHv-7gYj2pxh6jL97BxbOk_AHoadQRg</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Zabin, Mahe</creator><creator>Choi, Ho-Jin</creator><creator>Uddin, Jia</creator><creator>Furhad, Md. Hasan</creator><creator>Ullah, Abu.Barkat</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202101</creationdate><title>Industrial Fault Diagnosis using Hilbert Transform and Texture Features</title><author>Zabin, Mahe ; Choi, Ho-Jin ; Uddin, Jia ; Furhad, Md. Hasan ; Ullah, Abu.Barkat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-fc755d83f3ad1d5fcee2aa63e3a523e17f965a6e0e5496a35fcecaed72da7d903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational modeling</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Data models</topic><topic>Deep Convolutional Neural Network</topic><topic>Fault diagnosis</topic><topic>Hilbert Transform</topic><topic>Industry 4.0</topic><topic>Training</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Zabin, Mahe</creatorcontrib><creatorcontrib>Choi, Ho-Jin</creatorcontrib><creatorcontrib>Uddin, Jia</creatorcontrib><creatorcontrib>Furhad, Md. Hasan</creatorcontrib><creatorcontrib>Ullah, Abu.Barkat</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zabin, Mahe</au><au>Choi, Ho-Jin</au><au>Uddin, Jia</au><au>Furhad, Md. Hasan</au><au>Ullah, Abu.Barkat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Industrial Fault Diagnosis using Hilbert Transform and Texture Features</atitle><btitle>2021 IEEE International Conference on Big Data and Smart Computing (BigComp)</btitle><stitle>BIGCOMP</stitle><date>2021-01</date><risdate>2021</risdate><spage>121</spage><epage>128</epage><pages>121-128</pages><eissn>2375-9356</eissn><eisbn>9781728189246</eisbn><eisbn>1728189241</eisbn><coden>IEEPAD</coden><abstract>An automated fault detection is a vital issue in smart industries of Industry 4.0. This paper presents a model of industrial fault diagnosis using deep learning algorithms. In the proposed model, a standard induction motor dataset that consists of six different types of fault is used as an input. Then as a preprocessing method we utilized Hilbert transform to extract the pre-processed signals with absolute values. After that, texture images are generated from the pre-processed signals. The texture pattern of the images is used for training and testing the deep convolutional neural networks. For analyzing the performance of the proposed system, we used the F1-score which is derived from precision and recall. Experimental results demonstrate that the proposed model exhibited average 98.48% F1 score for the dataset, where HC (98.33%), IRF (98.57%), BF (98.41%), and ORF (98.56%), respectively. In addition, the proposed model shows comparatively higher classification accuracy compared to the four state-of-art models by showing the higher F1 score.</abstract><pub>IEEE</pub><doi>10.1109/BigComp51126.2021.00031</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-9356 |
ispartof | 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), 2021, p.121-128 |
issn | 2375-9356 |
language | eng |
recordid | cdi_ieee_primary_9373237 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Convolution Convolutional neural networks Data models Deep Convolutional Neural Network Fault diagnosis Hilbert Transform Industry 4.0 Training Transforms |
title | Industrial Fault Diagnosis using Hilbert Transform and Texture Features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Industrial%20Fault%20Diagnosis%20using%20Hilbert%20Transform%20and%20Texture%20Features&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Big%20Data%20and%20Smart%20Computing%20(BigComp)&rft.au=Zabin,%20Mahe&rft.date=2021-01&rft.spage=121&rft.epage=128&rft.pages=121-128&rft.eissn=2375-9356&rft.coden=IEEPAD&rft_id=info:doi/10.1109/BigComp51126.2021.00031&rft.eisbn=9781728189246&rft.eisbn_list=1728189241&rft_dat=%3Cieee_CHZPO%3E9373237%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-fc755d83f3ad1d5fcee2aa63e3a523e17f965a6e0e5496a35fcecaed72da7d903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9373237&rfr_iscdi=true |