Loading…
DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models
Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is neces...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 295 |
container_issue | |
container_start_page | 292 |
container_title | |
container_volume | |
creator | Alves, Joao Araujo, Tiago Marques, Bernardo Dias, Paulo Santos, Beatriz Sousa |
description | Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is necessary to validate its behavior and guarantee that it will continue to perform as expected when deployed in a real-world environment. For this reason, it is important to comprehend specific aspects of such systems. For example, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images via feature visualization often focuses on explaining predictions for neurons of one single convolutional layer. Not presenting a global perspective over the features learned by the model leads the user to miss the bigger picture. In this work we focus on providing a representation based on the structure of deep neural networks. It presents a visualization able to give the user a global perspective over the feature maps of a convolutional neural network (CNN) in a single image, revealing potential problems of the learning representations present in the network feature maps. |
doi_str_mv | 10.1109/IV51561.2020.00054 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9373251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373251</ieee_id><sourcerecordid>9373251</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-36356cd1f4b97716b06e00d6eadedeb87945ae69dab086abaf5612bf9f1858a63</originalsourceid><addsrcrecordid>eNotj81KAzEUhaMgWGtfQDd5gan3JpM_d7X-FSqC2m7LneaORGpGJuNCn16Lrg4cvvPBEeIMYYoI4WKxNmgsThUomAKAqQ_EJDiPTnkMqGt_KEZKO1MBan8sTkp5A6iNcWYknq-ZP55Sfi2XcibnXd5yHvq0rfadvKLCUa5T-aRd-qYhdVkOnVzlyH0ZKEe5n8slU5_3_EMXeVdOxVFLu8KT_xyL1e3Ny_y-Wj7eLeazZZUU6KHSVhu7jdjWTXAObQOWAaJlihy58S7UhtiGSA14Sw21vy9V04YWvfFk9Vic_3kTM28--vRO_dcmaKeVQf0DKANQXw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models</title><source>IEEE Xplore All Conference Series</source><creator>Alves, Joao ; Araujo, Tiago ; Marques, Bernardo ; Dias, Paulo ; Santos, Beatriz Sousa</creator><creatorcontrib>Alves, Joao ; Araujo, Tiago ; Marques, Bernardo ; Dias, Paulo ; Santos, Beatriz Sousa</creatorcontrib><description>Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is necessary to validate its behavior and guarantee that it will continue to perform as expected when deployed in a real-world environment. For this reason, it is important to comprehend specific aspects of such systems. For example, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images via feature visualization often focuses on explaining predictions for neurons of one single convolutional layer. Not presenting a global perspective over the features learned by the model leads the user to miss the bigger picture. In this work we focus on providing a representation based on the structure of deep neural networks. It presents a visualization able to give the user a global perspective over the feature maps of a convolutional neural network (CNN) in a single image, revealing potential problems of the learning representations present in the network feature maps.</description><identifier>EISSN: 2375-0138</identifier><identifier>EISBN: 9781728191348</identifier><identifier>EISBN: 1728191343</identifier><identifier>DOI: 10.1109/IV51561.2020.00054</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; Concentric Ring Design ; Convolutional Neural Networks Feature Visualization ; Critical infrastructure ; Deep learning ; Deep Learning Interpretability ; Learning (artificial intelligence) ; Neurons ; Task analysis ; Visualization</subject><ispartof>2020 24th International Conference Information Visualisation (IV), 2020, p.292-295</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27899,54527,54904</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alves, Joao</creatorcontrib><creatorcontrib>Araujo, Tiago</creatorcontrib><creatorcontrib>Marques, Bernardo</creatorcontrib><creatorcontrib>Dias, Paulo</creatorcontrib><creatorcontrib>Santos, Beatriz Sousa</creatorcontrib><title>DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models</title><title>2020 24th International Conference Information Visualisation (IV)</title><addtitle>IV</addtitle><description>Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is necessary to validate its behavior and guarantee that it will continue to perform as expected when deployed in a real-world environment. For this reason, it is important to comprehend specific aspects of such systems. For example, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images via feature visualization often focuses on explaining predictions for neurons of one single convolutional layer. Not presenting a global perspective over the features learned by the model leads the user to miss the bigger picture. In this work we focus on providing a representation based on the structure of deep neural networks. It presents a visualization able to give the user a global perspective over the feature maps of a convolutional neural network (CNN) in a single image, revealing potential problems of the learning representations present in the network feature maps.</description><subject>Biological neural networks</subject><subject>Concentric Ring Design</subject><subject>Convolutional Neural Networks Feature Visualization</subject><subject>Critical infrastructure</subject><subject>Deep learning</subject><subject>Deep Learning Interpretability</subject><subject>Learning (artificial intelligence)</subject><subject>Neurons</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>2375-0138</issn><isbn>9781728191348</isbn><isbn>1728191343</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEUhaMgWGtfQDd5gan3JpM_d7X-FSqC2m7LneaORGpGJuNCn16Lrg4cvvPBEeIMYYoI4WKxNmgsThUomAKAqQ_EJDiPTnkMqGt_KEZKO1MBan8sTkp5A6iNcWYknq-ZP55Sfi2XcibnXd5yHvq0rfadvKLCUa5T-aRd-qYhdVkOnVzlyH0ZKEe5n8slU5_3_EMXeVdOxVFLu8KT_xyL1e3Ny_y-Wj7eLeazZZUU6KHSVhu7jdjWTXAObQOWAaJlihy58S7UhtiGSA14Sw21vy9V04YWvfFk9Vic_3kTM28--vRO_dcmaKeVQf0DKANQXw</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Alves, Joao</creator><creator>Araujo, Tiago</creator><creator>Marques, Bernardo</creator><creator>Dias, Paulo</creator><creator>Santos, Beatriz Sousa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202009</creationdate><title>DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models</title><author>Alves, Joao ; Araujo, Tiago ; Marques, Bernardo ; Dias, Paulo ; Santos, Beatriz Sousa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-36356cd1f4b97716b06e00d6eadedeb87945ae69dab086abaf5612bf9f1858a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological neural networks</topic><topic>Concentric Ring Design</topic><topic>Convolutional Neural Networks Feature Visualization</topic><topic>Critical infrastructure</topic><topic>Deep learning</topic><topic>Deep Learning Interpretability</topic><topic>Learning (artificial intelligence)</topic><topic>Neurons</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Alves, Joao</creatorcontrib><creatorcontrib>Araujo, Tiago</creatorcontrib><creatorcontrib>Marques, Bernardo</creatorcontrib><creatorcontrib>Dias, Paulo</creatorcontrib><creatorcontrib>Santos, Beatriz Sousa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alves, Joao</au><au>Araujo, Tiago</au><au>Marques, Bernardo</au><au>Dias, Paulo</au><au>Santos, Beatriz Sousa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models</atitle><btitle>2020 24th International Conference Information Visualisation (IV)</btitle><stitle>IV</stitle><date>2020-09</date><risdate>2020</risdate><spage>292</spage><epage>295</epage><pages>292-295</pages><eissn>2375-0138</eissn><eisbn>9781728191348</eisbn><eisbn>1728191343</eisbn><coden>IEEPAD</coden><abstract>Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is necessary to validate its behavior and guarantee that it will continue to perform as expected when deployed in a real-world environment. For this reason, it is important to comprehend specific aspects of such systems. For example, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images via feature visualization often focuses on explaining predictions for neurons of one single convolutional layer. Not presenting a global perspective over the features learned by the model leads the user to miss the bigger picture. In this work we focus on providing a representation based on the structure of deep neural networks. It presents a visualization able to give the user a global perspective over the feature maps of a convolutional neural network (CNN) in a single image, revealing potential problems of the learning representations present in the network feature maps.</abstract><pub>IEEE</pub><doi>10.1109/IV51561.2020.00054</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-0138 |
ispartof | 2020 24th International Conference Information Visualisation (IV), 2020, p.292-295 |
issn | 2375-0138 |
language | eng |
recordid | cdi_ieee_primary_9373251 |
source | IEEE Xplore All Conference Series |
subjects | Biological neural networks Concentric Ring Design Convolutional Neural Networks Feature Visualization Critical infrastructure Deep learning Deep Learning Interpretability Learning (artificial intelligence) Neurons Task analysis Visualization |
title | DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T02%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DeepRings:%20A%20Concentric-Ring%20Based%20Visualization%20to%20Understand%20Deep%20Learning%20Models&rft.btitle=2020%2024th%20International%20Conference%20Information%20Visualisation%20(IV)&rft.au=Alves,%20Joao&rft.date=2020-09&rft.spage=292&rft.epage=295&rft.pages=292-295&rft.eissn=2375-0138&rft.coden=IEEPAD&rft_id=info:doi/10.1109/IV51561.2020.00054&rft.eisbn=9781728191348&rft.eisbn_list=1728191343&rft_dat=%3Cieee_CHZPO%3E9373251%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-36356cd1f4b97716b06e00d6eadedeb87945ae69dab086abaf5612bf9f1858a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9373251&rfr_iscdi=true |