Loading…

DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models

Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is neces...

Full description

Saved in:
Bibliographic Details
Main Authors: Alves, Joao, Araujo, Tiago, Marques, Bernardo, Dias, Paulo, Santos, Beatriz Sousa
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 295
container_issue
container_start_page 292
container_title
container_volume
creator Alves, Joao
Araujo, Tiago
Marques, Bernardo
Dias, Paulo
Santos, Beatriz Sousa
description Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is necessary to validate its behavior and guarantee that it will continue to perform as expected when deployed in a real-world environment. For this reason, it is important to comprehend specific aspects of such systems. For example, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images via feature visualization often focuses on explaining predictions for neurons of one single convolutional layer. Not presenting a global perspective over the features learned by the model leads the user to miss the bigger picture. In this work we focus on providing a representation based on the structure of deep neural networks. It presents a visualization able to give the user a global perspective over the feature maps of a convolutional neural network (CNN) in a single image, revealing potential problems of the learning representations present in the network feature maps.
doi_str_mv 10.1109/IV51561.2020.00054
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9373251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373251</ieee_id><sourcerecordid>9373251</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-36356cd1f4b97716b06e00d6eadedeb87945ae69dab086abaf5612bf9f1858a63</originalsourceid><addsrcrecordid>eNotj81KAzEUhaMgWGtfQDd5gan3JpM_d7X-FSqC2m7LneaORGpGJuNCn16Lrg4cvvPBEeIMYYoI4WKxNmgsThUomAKAqQ_EJDiPTnkMqGt_KEZKO1MBan8sTkp5A6iNcWYknq-ZP55Sfi2XcibnXd5yHvq0rfadvKLCUa5T-aRd-qYhdVkOnVzlyH0ZKEe5n8slU5_3_EMXeVdOxVFLu8KT_xyL1e3Ny_y-Wj7eLeazZZUU6KHSVhu7jdjWTXAObQOWAaJlihy58S7UhtiGSA14Sw21vy9V04YWvfFk9Vic_3kTM28--vRO_dcmaKeVQf0DKANQXw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models</title><source>IEEE Xplore All Conference Series</source><creator>Alves, Joao ; Araujo, Tiago ; Marques, Bernardo ; Dias, Paulo ; Santos, Beatriz Sousa</creator><creatorcontrib>Alves, Joao ; Araujo, Tiago ; Marques, Bernardo ; Dias, Paulo ; Santos, Beatriz Sousa</creatorcontrib><description>Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is necessary to validate its behavior and guarantee that it will continue to perform as expected when deployed in a real-world environment. For this reason, it is important to comprehend specific aspects of such systems. For example, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images via feature visualization often focuses on explaining predictions for neurons of one single convolutional layer. Not presenting a global perspective over the features learned by the model leads the user to miss the bigger picture. In this work we focus on providing a representation based on the structure of deep neural networks. It presents a visualization able to give the user a global perspective over the feature maps of a convolutional neural network (CNN) in a single image, revealing potential problems of the learning representations present in the network feature maps.</description><identifier>EISSN: 2375-0138</identifier><identifier>EISBN: 9781728191348</identifier><identifier>EISBN: 1728191343</identifier><identifier>DOI: 10.1109/IV51561.2020.00054</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; Concentric Ring Design ; Convolutional Neural Networks Feature Visualization ; Critical infrastructure ; Deep learning ; Deep Learning Interpretability ; Learning (artificial intelligence) ; Neurons ; Task analysis ; Visualization</subject><ispartof>2020 24th International Conference Information Visualisation (IV), 2020, p.292-295</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27899,54527,54904</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9373251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alves, Joao</creatorcontrib><creatorcontrib>Araujo, Tiago</creatorcontrib><creatorcontrib>Marques, Bernardo</creatorcontrib><creatorcontrib>Dias, Paulo</creatorcontrib><creatorcontrib>Santos, Beatriz Sousa</creatorcontrib><title>DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models</title><title>2020 24th International Conference Information Visualisation (IV)</title><addtitle>IV</addtitle><description>Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is necessary to validate its behavior and guarantee that it will continue to perform as expected when deployed in a real-world environment. For this reason, it is important to comprehend specific aspects of such systems. For example, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images via feature visualization often focuses on explaining predictions for neurons of one single convolutional layer. Not presenting a global perspective over the features learned by the model leads the user to miss the bigger picture. In this work we focus on providing a representation based on the structure of deep neural networks. It presents a visualization able to give the user a global perspective over the feature maps of a convolutional neural network (CNN) in a single image, revealing potential problems of the learning representations present in the network feature maps.</description><subject>Biological neural networks</subject><subject>Concentric Ring Design</subject><subject>Convolutional Neural Networks Feature Visualization</subject><subject>Critical infrastructure</subject><subject>Deep learning</subject><subject>Deep Learning Interpretability</subject><subject>Learning (artificial intelligence)</subject><subject>Neurons</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>2375-0138</issn><isbn>9781728191348</isbn><isbn>1728191343</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEUhaMgWGtfQDd5gan3JpM_d7X-FSqC2m7LneaORGpGJuNCn16Lrg4cvvPBEeIMYYoI4WKxNmgsThUomAKAqQ_EJDiPTnkMqGt_KEZKO1MBan8sTkp5A6iNcWYknq-ZP55Sfi2XcibnXd5yHvq0rfadvKLCUa5T-aRd-qYhdVkOnVzlyH0ZKEe5n8slU5_3_EMXeVdOxVFLu8KT_xyL1e3Ny_y-Wj7eLeazZZUU6KHSVhu7jdjWTXAObQOWAaJlihy58S7UhtiGSA14Sw21vy9V04YWvfFk9Vic_3kTM28--vRO_dcmaKeVQf0DKANQXw</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Alves, Joao</creator><creator>Araujo, Tiago</creator><creator>Marques, Bernardo</creator><creator>Dias, Paulo</creator><creator>Santos, Beatriz Sousa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202009</creationdate><title>DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models</title><author>Alves, Joao ; Araujo, Tiago ; Marques, Bernardo ; Dias, Paulo ; Santos, Beatriz Sousa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-36356cd1f4b97716b06e00d6eadedeb87945ae69dab086abaf5612bf9f1858a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological neural networks</topic><topic>Concentric Ring Design</topic><topic>Convolutional Neural Networks Feature Visualization</topic><topic>Critical infrastructure</topic><topic>Deep learning</topic><topic>Deep Learning Interpretability</topic><topic>Learning (artificial intelligence)</topic><topic>Neurons</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Alves, Joao</creatorcontrib><creatorcontrib>Araujo, Tiago</creatorcontrib><creatorcontrib>Marques, Bernardo</creatorcontrib><creatorcontrib>Dias, Paulo</creatorcontrib><creatorcontrib>Santos, Beatriz Sousa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alves, Joao</au><au>Araujo, Tiago</au><au>Marques, Bernardo</au><au>Dias, Paulo</au><au>Santos, Beatriz Sousa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models</atitle><btitle>2020 24th International Conference Information Visualisation (IV)</btitle><stitle>IV</stitle><date>2020-09</date><risdate>2020</risdate><spage>292</spage><epage>295</epage><pages>292-295</pages><eissn>2375-0138</eissn><eisbn>9781728191348</eisbn><eisbn>1728191343</eisbn><coden>IEEPAD</coden><abstract>Artificial Intelligent (AI) techniques, such as ma-chine learning (ML), have been making significant progress over the past decade. Many systems have been applied in sensitive tasks involving critical infrastructures which affect human well-being or health. Before deploying an AI system, it is necessary to validate its behavior and guarantee that it will continue to perform as expected when deployed in a real-world environment. For this reason, it is important to comprehend specific aspects of such systems. For example, understanding how neural networks produce final predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images via feature visualization often focuses on explaining predictions for neurons of one single convolutional layer. Not presenting a global perspective over the features learned by the model leads the user to miss the bigger picture. In this work we focus on providing a representation based on the structure of deep neural networks. It presents a visualization able to give the user a global perspective over the feature maps of a convolutional neural network (CNN) in a single image, revealing potential problems of the learning representations present in the network feature maps.</abstract><pub>IEEE</pub><doi>10.1109/IV51561.2020.00054</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-0138
ispartof 2020 24th International Conference Information Visualisation (IV), 2020, p.292-295
issn 2375-0138
language eng
recordid cdi_ieee_primary_9373251
source IEEE Xplore All Conference Series
subjects Biological neural networks
Concentric Ring Design
Convolutional Neural Networks Feature Visualization
Critical infrastructure
Deep learning
Deep Learning Interpretability
Learning (artificial intelligence)
Neurons
Task analysis
Visualization
title DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T02%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DeepRings:%20A%20Concentric-Ring%20Based%20Visualization%20to%20Understand%20Deep%20Learning%20Models&rft.btitle=2020%2024th%20International%20Conference%20Information%20Visualisation%20(IV)&rft.au=Alves,%20Joao&rft.date=2020-09&rft.spage=292&rft.epage=295&rft.pages=292-295&rft.eissn=2375-0138&rft.coden=IEEPAD&rft_id=info:doi/10.1109/IV51561.2020.00054&rft.eisbn=9781728191348&rft.eisbn_list=1728191343&rft_dat=%3Cieee_CHZPO%3E9373251%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-36356cd1f4b97716b06e00d6eadedeb87945ae69dab086abaf5612bf9f1858a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9373251&rfr_iscdi=true