Loading…

Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network

In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural netw...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.40076-40085
Main Authors: Nguyen, Ngoc Phi, Mung, Nguyen Xuan, Thanh, Ha Le Nhu Ngoc, Huynh, Tuan Tu, Lam, Ngoc Tam, Hong, Sung Kyung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03
cites cdi_FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03
container_end_page 40085
container_issue
container_start_page 40076
container_title IEEE access
container_volume 9
creator Nguyen, Ngoc Phi
Mung, Nguyen Xuan
Thanh, Ha Le Nhu Ngoc
Huynh, Tuan Tu
Lam, Ngoc Tam
Hong, Sung Kyung
description In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural network algorithm to achieve the time-varying sliding surface; their coefficients in sliding surface are adjusted through backpropagation law. The disturbance observer is also combined with sliding mode controllers to estimate and handle the external disturbances. Finally, the Lyapunov theory is applied to validate the stability of suggested control method. The performance of proposed sliding mode control has been evaluated using a numerical simulation. The results show that the attitude and altitude controller based on suggested algorithm has a better tracking performance and disturbance rejection.
doi_str_mv 10.1109/ACCESS.2021.3064883
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9373410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373410</ieee_id><doaj_id>oai_doaj_org_article_cabaaa79c75f4598a23dfb2ca88eaa77</doaj_id><sourcerecordid>2503499718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03</originalsourceid><addsrcrecordid>eNpNkUlPwzAQhSMEElXpL-BiiXOLl8TLMYrKIrEIFbhak9ipXNK6OA6If48hFWIuM_40742ll2XnBC8IweqyrKrlarWgmJIFwzyXkh1lE0q4mrOC8eN_82k26_sNTiUTKsQks6WBfXQfFq06Z9xuje69sajyuxh8h1ofUBmji0OCsDOo7A6P1Vcf7Rb5FgF6GsA0fh9tQC_lK_pwgB7sEKBLLX768HaWnbTQ9XZ26NPs-Wr5XN3M7x6vb6vybt7kIo9zUtPW5FJISVpeEFMIDJiB4Jgby7lQtcgxV6TmosZUGagNNaYWzEiSCJtmt6Ot8bDR--C2EL60B6d_gQ9rDSG6prO6gRoAhGpE0eaFkkCZaWvagJQ2cZG8LkavffDvg-2j3vgh7NLvNS0wy5USRKYtNm41wfd9sO3fVYL1Tzp6TEf_pKMP6STV-ahy1to_hWKC5QSzb5jmisw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499718</pqid></control><display><type>article</type><title>Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network</title><source>IEEE Xplore Open Access Journals</source><creator>Nguyen, Ngoc Phi ; Mung, Nguyen Xuan ; Thanh, Ha Le Nhu Ngoc ; Huynh, Tuan Tu ; Lam, Ngoc Tam ; Hong, Sung Kyung</creator><creatorcontrib>Nguyen, Ngoc Phi ; Mung, Nguyen Xuan ; Thanh, Ha Le Nhu Ngoc ; Huynh, Tuan Tu ; Lam, Ngoc Tam ; Hong, Sung Kyung</creatorcontrib><description>In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural network algorithm to achieve the time-varying sliding surface; their coefficients in sliding surface are adjusted through backpropagation law. The disturbance observer is also combined with sliding mode controllers to estimate and handle the external disturbances. Finally, the Lyapunov theory is applied to validate the stability of suggested control method. The performance of proposed sliding mode control has been evaluated using a numerical simulation. The results show that the attitude and altitude controller based on suggested algorithm has a better tracking performance and disturbance rejection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3064883</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Adaptive sliding mode ; Algorithms ; Altitude ; Attitude control ; Attitudes ; Back propagation ; Back propagation networks ; Backpropagation ; Control methods ; Control stability ; Controllers ; Disturbance observers ; Dynamic models ; Mathematical model ; Neural networks ; Nonlinear dynamical systems ; quadrotor ; Sliding mode control ; Uncertainty ; Unmanned aerial vehicles</subject><ispartof>IEEE access, 2021, Vol.9, p.40076-40085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03</citedby><cites>FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03</cites><orcidid>0000-0001-5632-9399 ; 0000-0003-1143-2194 ; 0000-0002-5100-6264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373410$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nguyen, Ngoc Phi</creatorcontrib><creatorcontrib>Mung, Nguyen Xuan</creatorcontrib><creatorcontrib>Thanh, Ha Le Nhu Ngoc</creatorcontrib><creatorcontrib>Huynh, Tuan Tu</creatorcontrib><creatorcontrib>Lam, Ngoc Tam</creatorcontrib><creatorcontrib>Hong, Sung Kyung</creatorcontrib><title>Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural network algorithm to achieve the time-varying sliding surface; their coefficients in sliding surface are adjusted through backpropagation law. The disturbance observer is also combined with sliding mode controllers to estimate and handle the external disturbances. Finally, the Lyapunov theory is applied to validate the stability of suggested control method. The performance of proposed sliding mode control has been evaluated using a numerical simulation. The results show that the attitude and altitude controller based on suggested algorithm has a better tracking performance and disturbance rejection.</description><subject>Adaptive control</subject><subject>Adaptive sliding mode</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Attitude control</subject><subject>Attitudes</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Backpropagation</subject><subject>Control methods</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Disturbance observers</subject><subject>Dynamic models</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>quadrotor</subject><subject>Sliding mode control</subject><subject>Uncertainty</subject><subject>Unmanned aerial vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUlPwzAQhSMEElXpL-BiiXOLl8TLMYrKIrEIFbhak9ipXNK6OA6If48hFWIuM_40742ll2XnBC8IweqyrKrlarWgmJIFwzyXkh1lE0q4mrOC8eN_82k26_sNTiUTKsQks6WBfXQfFq06Z9xuje69sajyuxh8h1ofUBmji0OCsDOo7A6P1Vcf7Rb5FgF6GsA0fh9tQC_lK_pwgB7sEKBLLX768HaWnbTQ9XZ26NPs-Wr5XN3M7x6vb6vybt7kIo9zUtPW5FJISVpeEFMIDJiB4Jgby7lQtcgxV6TmosZUGagNNaYWzEiSCJtmt6Ot8bDR--C2EL60B6d_gQ9rDSG6prO6gRoAhGpE0eaFkkCZaWvagJQ2cZG8LkavffDvg-2j3vgh7NLvNS0wy5USRKYtNm41wfd9sO3fVYL1Tzp6TEf_pKMP6STV-ahy1to_hWKC5QSzb5jmisw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Nguyen, Ngoc Phi</creator><creator>Mung, Nguyen Xuan</creator><creator>Thanh, Ha Le Nhu Ngoc</creator><creator>Huynh, Tuan Tu</creator><creator>Lam, Ngoc Tam</creator><creator>Hong, Sung Kyung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5632-9399</orcidid><orcidid>https://orcid.org/0000-0003-1143-2194</orcidid><orcidid>https://orcid.org/0000-0002-5100-6264</orcidid></search><sort><creationdate>2021</creationdate><title>Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network</title><author>Nguyen, Ngoc Phi ; Mung, Nguyen Xuan ; Thanh, Ha Le Nhu Ngoc ; Huynh, Tuan Tu ; Lam, Ngoc Tam ; Hong, Sung Kyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Adaptive sliding mode</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Attitude control</topic><topic>Attitudes</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Backpropagation</topic><topic>Control methods</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Disturbance observers</topic><topic>Dynamic models</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>quadrotor</topic><topic>Sliding mode control</topic><topic>Uncertainty</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Ngoc Phi</creatorcontrib><creatorcontrib>Mung, Nguyen Xuan</creatorcontrib><creatorcontrib>Thanh, Ha Le Nhu Ngoc</creatorcontrib><creatorcontrib>Huynh, Tuan Tu</creatorcontrib><creatorcontrib>Lam, Ngoc Tam</creatorcontrib><creatorcontrib>Hong, Sung Kyung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Ngoc Phi</au><au>Mung, Nguyen Xuan</au><au>Thanh, Ha Le Nhu Ngoc</au><au>Huynh, Tuan Tu</au><au>Lam, Ngoc Tam</au><au>Hong, Sung Kyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>40076</spage><epage>40085</epage><pages>40076-40085</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural network algorithm to achieve the time-varying sliding surface; their coefficients in sliding surface are adjusted through backpropagation law. The disturbance observer is also combined with sliding mode controllers to estimate and handle the external disturbances. Finally, the Lyapunov theory is applied to validate the stability of suggested control method. The performance of proposed sliding mode control has been evaluated using a numerical simulation. The results show that the attitude and altitude controller based on suggested algorithm has a better tracking performance and disturbance rejection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3064883</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5632-9399</orcidid><orcidid>https://orcid.org/0000-0003-1143-2194</orcidid><orcidid>https://orcid.org/0000-0002-5100-6264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.40076-40085
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9373410
source IEEE Xplore Open Access Journals
subjects Adaptive control
Adaptive sliding mode
Algorithms
Altitude
Attitude control
Attitudes
Back propagation
Back propagation networks
Backpropagation
Control methods
Control stability
Controllers
Disturbance observers
Dynamic models
Mathematical model
Neural networks
Nonlinear dynamical systems
quadrotor
Sliding mode control
Uncertainty
Unmanned aerial vehicles
title Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Sliding%20Mode%20Control%20for%20Attitude%20and%20Altitude%20System%20of%20a%20Quadcopter%20UAV%20via%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Ngoc%20Phi&rft.date=2021&rft.volume=9&rft.spage=40076&rft.epage=40085&rft.pages=40076-40085&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3064883&rft_dat=%3Cproquest_ieee_%3E2503499718%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503499718&rft_id=info:pmid/&rft_ieee_id=9373410&rfr_iscdi=true