Loading…
Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network
In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural netw...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.40076-40085 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03 |
container_end_page | 40085 |
container_issue | |
container_start_page | 40076 |
container_title | IEEE access |
container_volume | 9 |
creator | Nguyen, Ngoc Phi Mung, Nguyen Xuan Thanh, Ha Le Nhu Ngoc Huynh, Tuan Tu Lam, Ngoc Tam Hong, Sung Kyung |
description | In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural network algorithm to achieve the time-varying sliding surface; their coefficients in sliding surface are adjusted through backpropagation law. The disturbance observer is also combined with sliding mode controllers to estimate and handle the external disturbances. Finally, the Lyapunov theory is applied to validate the stability of suggested control method. The performance of proposed sliding mode control has been evaluated using a numerical simulation. The results show that the attitude and altitude controller based on suggested algorithm has a better tracking performance and disturbance rejection. |
doi_str_mv | 10.1109/ACCESS.2021.3064883 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9373410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9373410</ieee_id><doaj_id>oai_doaj_org_article_cabaaa79c75f4598a23dfb2ca88eaa77</doaj_id><sourcerecordid>2503499718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03</originalsourceid><addsrcrecordid>eNpNkUlPwzAQhSMEElXpL-BiiXOLl8TLMYrKIrEIFbhak9ipXNK6OA6If48hFWIuM_40742ll2XnBC8IweqyrKrlarWgmJIFwzyXkh1lE0q4mrOC8eN_82k26_sNTiUTKsQks6WBfXQfFq06Z9xuje69sajyuxh8h1ofUBmji0OCsDOo7A6P1Vcf7Rb5FgF6GsA0fh9tQC_lK_pwgB7sEKBLLX768HaWnbTQ9XZ26NPs-Wr5XN3M7x6vb6vybt7kIo9zUtPW5FJISVpeEFMIDJiB4Jgby7lQtcgxV6TmosZUGagNNaYWzEiSCJtmt6Ot8bDR--C2EL60B6d_gQ9rDSG6prO6gRoAhGpE0eaFkkCZaWvagJQ2cZG8LkavffDvg-2j3vgh7NLvNS0wy5USRKYtNm41wfd9sO3fVYL1Tzp6TEf_pKMP6STV-ahy1to_hWKC5QSzb5jmisw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499718</pqid></control><display><type>article</type><title>Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network</title><source>IEEE Xplore Open Access Journals</source><creator>Nguyen, Ngoc Phi ; Mung, Nguyen Xuan ; Thanh, Ha Le Nhu Ngoc ; Huynh, Tuan Tu ; Lam, Ngoc Tam ; Hong, Sung Kyung</creator><creatorcontrib>Nguyen, Ngoc Phi ; Mung, Nguyen Xuan ; Thanh, Ha Le Nhu Ngoc ; Huynh, Tuan Tu ; Lam, Ngoc Tam ; Hong, Sung Kyung</creatorcontrib><description>In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural network algorithm to achieve the time-varying sliding surface; their coefficients in sliding surface are adjusted through backpropagation law. The disturbance observer is also combined with sliding mode controllers to estimate and handle the external disturbances. Finally, the Lyapunov theory is applied to validate the stability of suggested control method. The performance of proposed sliding mode control has been evaluated using a numerical simulation. The results show that the attitude and altitude controller based on suggested algorithm has a better tracking performance and disturbance rejection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3064883</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Adaptive sliding mode ; Algorithms ; Altitude ; Attitude control ; Attitudes ; Back propagation ; Back propagation networks ; Backpropagation ; Control methods ; Control stability ; Controllers ; Disturbance observers ; Dynamic models ; Mathematical model ; Neural networks ; Nonlinear dynamical systems ; quadrotor ; Sliding mode control ; Uncertainty ; Unmanned aerial vehicles</subject><ispartof>IEEE access, 2021, Vol.9, p.40076-40085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03</citedby><cites>FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03</cites><orcidid>0000-0001-5632-9399 ; 0000-0003-1143-2194 ; 0000-0002-5100-6264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9373410$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nguyen, Ngoc Phi</creatorcontrib><creatorcontrib>Mung, Nguyen Xuan</creatorcontrib><creatorcontrib>Thanh, Ha Le Nhu Ngoc</creatorcontrib><creatorcontrib>Huynh, Tuan Tu</creatorcontrib><creatorcontrib>Lam, Ngoc Tam</creatorcontrib><creatorcontrib>Hong, Sung Kyung</creatorcontrib><title>Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural network algorithm to achieve the time-varying sliding surface; their coefficients in sliding surface are adjusted through backpropagation law. The disturbance observer is also combined with sliding mode controllers to estimate and handle the external disturbances. Finally, the Lyapunov theory is applied to validate the stability of suggested control method. The performance of proposed sliding mode control has been evaluated using a numerical simulation. The results show that the attitude and altitude controller based on suggested algorithm has a better tracking performance and disturbance rejection.</description><subject>Adaptive control</subject><subject>Adaptive sliding mode</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Attitude control</subject><subject>Attitudes</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Backpropagation</subject><subject>Control methods</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Disturbance observers</subject><subject>Dynamic models</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>quadrotor</subject><subject>Sliding mode control</subject><subject>Uncertainty</subject><subject>Unmanned aerial vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUlPwzAQhSMEElXpL-BiiXOLl8TLMYrKIrEIFbhak9ipXNK6OA6If48hFWIuM_40742ll2XnBC8IweqyrKrlarWgmJIFwzyXkh1lE0q4mrOC8eN_82k26_sNTiUTKsQks6WBfXQfFq06Z9xuje69sajyuxh8h1ofUBmji0OCsDOo7A6P1Vcf7Rb5FgF6GsA0fh9tQC_lK_pwgB7sEKBLLX768HaWnbTQ9XZ26NPs-Wr5XN3M7x6vb6vybt7kIo9zUtPW5FJISVpeEFMIDJiB4Jgby7lQtcgxV6TmosZUGagNNaYWzEiSCJtmt6Ot8bDR--C2EL60B6d_gQ9rDSG6prO6gRoAhGpE0eaFkkCZaWvagJQ2cZG8LkavffDvg-2j3vgh7NLvNS0wy5USRKYtNm41wfd9sO3fVYL1Tzp6TEf_pKMP6STV-ahy1to_hWKC5QSzb5jmisw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Nguyen, Ngoc Phi</creator><creator>Mung, Nguyen Xuan</creator><creator>Thanh, Ha Le Nhu Ngoc</creator><creator>Huynh, Tuan Tu</creator><creator>Lam, Ngoc Tam</creator><creator>Hong, Sung Kyung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5632-9399</orcidid><orcidid>https://orcid.org/0000-0003-1143-2194</orcidid><orcidid>https://orcid.org/0000-0002-5100-6264</orcidid></search><sort><creationdate>2021</creationdate><title>Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network</title><author>Nguyen, Ngoc Phi ; Mung, Nguyen Xuan ; Thanh, Ha Le Nhu Ngoc ; Huynh, Tuan Tu ; Lam, Ngoc Tam ; Hong, Sung Kyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Adaptive sliding mode</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Attitude control</topic><topic>Attitudes</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Backpropagation</topic><topic>Control methods</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Disturbance observers</topic><topic>Dynamic models</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>quadrotor</topic><topic>Sliding mode control</topic><topic>Uncertainty</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Ngoc Phi</creatorcontrib><creatorcontrib>Mung, Nguyen Xuan</creatorcontrib><creatorcontrib>Thanh, Ha Le Nhu Ngoc</creatorcontrib><creatorcontrib>Huynh, Tuan Tu</creatorcontrib><creatorcontrib>Lam, Ngoc Tam</creatorcontrib><creatorcontrib>Hong, Sung Kyung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Ngoc Phi</au><au>Mung, Nguyen Xuan</au><au>Thanh, Ha Le Nhu Ngoc</au><au>Huynh, Tuan Tu</au><au>Lam, Ngoc Tam</au><au>Hong, Sung Kyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>40076</spage><epage>40085</epage><pages>40076-40085</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this article, a sliding mode control based on neural networks is proposed for attitude and altitude system of quadcopter under external disturbances. First, the dynamic model of the quadcopter is considered under external disturbances. Sliding mode controllers are then integrated with neural network algorithm to achieve the time-varying sliding surface; their coefficients in sliding surface are adjusted through backpropagation law. The disturbance observer is also combined with sliding mode controllers to estimate and handle the external disturbances. Finally, the Lyapunov theory is applied to validate the stability of suggested control method. The performance of proposed sliding mode control has been evaluated using a numerical simulation. The results show that the attitude and altitude controller based on suggested algorithm has a better tracking performance and disturbance rejection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3064883</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5632-9399</orcidid><orcidid>https://orcid.org/0000-0003-1143-2194</orcidid><orcidid>https://orcid.org/0000-0002-5100-6264</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.40076-40085 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9373410 |
source | IEEE Xplore Open Access Journals |
subjects | Adaptive control Adaptive sliding mode Algorithms Altitude Attitude control Attitudes Back propagation Back propagation networks Backpropagation Control methods Control stability Controllers Disturbance observers Dynamic models Mathematical model Neural networks Nonlinear dynamical systems quadrotor Sliding mode control Uncertainty Unmanned aerial vehicles |
title | Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Sliding%20Mode%20Control%20for%20Attitude%20and%20Altitude%20System%20of%20a%20Quadcopter%20UAV%20via%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Ngoc%20Phi&rft.date=2021&rft.volume=9&rft.spage=40076&rft.epage=40085&rft.pages=40076-40085&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3064883&rft_dat=%3Cproquest_ieee_%3E2503499718%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-1b2fd487881f651d570a03a7606de6679b740691b67b029dabd2ddb73d817b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503499718&rft_id=info:pmid/&rft_ieee_id=9373410&rfr_iscdi=true |