Loading…
Deep Auto-Encoders With Sequential Learning for Multimodal Dimensional Emotion Recognition
Multimodal dimensional emotion recognition has drawn a great attention from the affective computing community and numerous schemes have been extensively investigated, making a significant progress in this area. However, several questions still remain unanswered for most of existing approaches includ...
Saved in:
Published in: | IEEE transactions on multimedia 2022-01, Vol.24, p.1313-1324 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-a9d5f29d88e94c443b4b9024b38d0eac852b8d3c7d47615ad7ebc98d6f744b043 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-a9d5f29d88e94c443b4b9024b38d0eac852b8d3c7d47615ad7ebc98d6f744b043 |
container_end_page | 1324 |
container_issue | |
container_start_page | 1313 |
container_title | IEEE transactions on multimedia |
container_volume | 24 |
creator | Nguyen, Dung Nguyen, Duc Thanh Zeng, Rui Nguyen, Thanh Thi N. Tran, Son Nguyen, Thin Sridharan, Sridha Fookes, Clinton |
description | Multimodal dimensional emotion recognition has drawn a great attention from the affective computing community and numerous schemes have been extensively investigated, making a significant progress in this area. However, several questions still remain unanswered for most of existing approaches including: (i) how to simultaneously learn compact yet representative features from multimodal data, (ii) how to effectively capture complementary features from multimodal streams, and (iii) how to perform all the tasks in an end-to-end manner. To address these challenges, in this paper, we propose a novel deep neural network architecture consisting of a two-stream auto-encoder and a long short term memory for effectively integrating visual and audio signal streams for emotion recognition. To validate the robustness of our proposed architecture, we carry out extensive experiments on the multimodal emotion in the wild dataset: RECOLA. Experimental results show that the proposed method achieves state-of-the-art recognition performance. |
doi_str_mv | 10.1109/TMM.2021.3063612 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9374787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9374787</ieee_id><sourcerecordid>2645245373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a9d5f29d88e94c443b4b9024b38d0eac852b8d3c7d47615ad7ebc98d6f744b043</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZj2Szx9LWD2gRtCJ4WZLspG5psnU3Ofjv3dLiaR6G9x2Gh5BbChNKQT2sV6sJA0YnHHKeU3ZGRlQJmgJIeR45Y5AqRuGSXIWwBaAiAzkiX3PEfTIdepcuutoZ9CH5tP138o4_A3a9LXfJEkvf2W6TNM4nq2HX29aZuJ_bFrtgXRd50bo-UvKGtdt09sDX5KIpdwFvTnNMPh4X69lzunx9eplNl2nNOe_TUpmsYcoUBSpRC8ErUSlgouKFASzrImNVYXgtjZA5zUojsapVYfJGClGB4GNyf7y79y7-HHq9dYOPTwXNcpExkXHJYwqOqdq7EDw2eu9tW_pfTUEfDOpoUB8M6pPBWLk7Viwi_scVl0IWkv8BU4Js4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245373</pqid></control><display><type>article</type><title>Deep Auto-Encoders With Sequential Learning for Multimodal Dimensional Emotion Recognition</title><source>IEEE Xplore (Online service)</source><creator>Nguyen, Dung ; Nguyen, Duc Thanh ; Zeng, Rui ; Nguyen, Thanh Thi ; N. Tran, Son ; Nguyen, Thin ; Sridharan, Sridha ; Fookes, Clinton</creator><creatorcontrib>Nguyen, Dung ; Nguyen, Duc Thanh ; Zeng, Rui ; Nguyen, Thanh Thi ; N. Tran, Son ; Nguyen, Thin ; Sridharan, Sridha ; Fookes, Clinton</creatorcontrib><description>Multimodal dimensional emotion recognition has drawn a great attention from the affective computing community and numerous schemes have been extensively investigated, making a significant progress in this area. However, several questions still remain unanswered for most of existing approaches including: (i) how to simultaneously learn compact yet representative features from multimodal data, (ii) how to effectively capture complementary features from multimodal streams, and (iii) how to perform all the tasks in an end-to-end manner. To address these challenges, in this paper, we propose a novel deep neural network architecture consisting of a two-stream auto-encoder and a long short term memory for effectively integrating visual and audio signal streams for emotion recognition. To validate the robustness of our proposed architecture, we carry out extensive experiments on the multimodal emotion in the wild dataset: RECOLA. Experimental results show that the proposed method achieves state-of-the-art recognition performance.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3063612</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affective computing ; Artificial neural networks ; Auto-encoder ; Coders ; Computer architecture ; Convolution ; dimensional emotion recognition ; Emotion recognition ; Emotions ; Feature extraction ; Long short term memory ; Machine learning ; multimodal emotion recognition ; Short term ; Streaming media ; Streams ; Two dimensional displays ; Visual signals ; Visualization</subject><ispartof>IEEE transactions on multimedia, 2022-01, Vol.24, p.1313-1324</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a9d5f29d88e94c443b4b9024b38d0eac852b8d3c7d47615ad7ebc98d6f744b043</citedby><cites>FETCH-LOGICAL-c333t-a9d5f29d88e94c443b4b9024b38d0eac852b8d3c7d47615ad7ebc98d6f744b043</cites><orcidid>0000-0001-9709-1663 ; 0000-0003-4316-9001 ; 0000-0002-8515-6324 ; 0000-0002-2285-2066 ; 0000-0003-3467-8963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9374787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nguyen, Dung</creatorcontrib><creatorcontrib>Nguyen, Duc Thanh</creatorcontrib><creatorcontrib>Zeng, Rui</creatorcontrib><creatorcontrib>Nguyen, Thanh Thi</creatorcontrib><creatorcontrib>N. Tran, Son</creatorcontrib><creatorcontrib>Nguyen, Thin</creatorcontrib><creatorcontrib>Sridharan, Sridha</creatorcontrib><creatorcontrib>Fookes, Clinton</creatorcontrib><title>Deep Auto-Encoders With Sequential Learning for Multimodal Dimensional Emotion Recognition</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Multimodal dimensional emotion recognition has drawn a great attention from the affective computing community and numerous schemes have been extensively investigated, making a significant progress in this area. However, several questions still remain unanswered for most of existing approaches including: (i) how to simultaneously learn compact yet representative features from multimodal data, (ii) how to effectively capture complementary features from multimodal streams, and (iii) how to perform all the tasks in an end-to-end manner. To address these challenges, in this paper, we propose a novel deep neural network architecture consisting of a two-stream auto-encoder and a long short term memory for effectively integrating visual and audio signal streams for emotion recognition. To validate the robustness of our proposed architecture, we carry out extensive experiments on the multimodal emotion in the wild dataset: RECOLA. Experimental results show that the proposed method achieves state-of-the-art recognition performance.</description><subject>Affective computing</subject><subject>Artificial neural networks</subject><subject>Auto-encoder</subject><subject>Coders</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>dimensional emotion recognition</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>multimodal emotion recognition</subject><subject>Short term</subject><subject>Streaming media</subject><subject>Streams</subject><subject>Two dimensional displays</subject><subject>Visual signals</subject><subject>Visualization</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59TZj2Szx9LWD2gRtCJ4WZLspG5psnU3Ofjv3dLiaR6G9x2Gh5BbChNKQT2sV6sJA0YnHHKeU3ZGRlQJmgJIeR45Y5AqRuGSXIWwBaAiAzkiX3PEfTIdepcuutoZ9CH5tP138o4_A3a9LXfJEkvf2W6TNM4nq2HX29aZuJ_bFrtgXRd50bo-UvKGtdt09sDX5KIpdwFvTnNMPh4X69lzunx9eplNl2nNOe_TUpmsYcoUBSpRC8ErUSlgouKFASzrImNVYXgtjZA5zUojsapVYfJGClGB4GNyf7y79y7-HHq9dYOPTwXNcpExkXHJYwqOqdq7EDw2eu9tW_pfTUEfDOpoUB8M6pPBWLk7Viwi_scVl0IWkv8BU4Js4g</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Nguyen, Dung</creator><creator>Nguyen, Duc Thanh</creator><creator>Zeng, Rui</creator><creator>Nguyen, Thanh Thi</creator><creator>N. Tran, Son</creator><creator>Nguyen, Thin</creator><creator>Sridharan, Sridha</creator><creator>Fookes, Clinton</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9709-1663</orcidid><orcidid>https://orcid.org/0000-0003-4316-9001</orcidid><orcidid>https://orcid.org/0000-0002-8515-6324</orcidid><orcidid>https://orcid.org/0000-0002-2285-2066</orcidid><orcidid>https://orcid.org/0000-0003-3467-8963</orcidid></search><sort><creationdate>20220101</creationdate><title>Deep Auto-Encoders With Sequential Learning for Multimodal Dimensional Emotion Recognition</title><author>Nguyen, Dung ; Nguyen, Duc Thanh ; Zeng, Rui ; Nguyen, Thanh Thi ; N. Tran, Son ; Nguyen, Thin ; Sridharan, Sridha ; Fookes, Clinton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a9d5f29d88e94c443b4b9024b38d0eac852b8d3c7d47615ad7ebc98d6f744b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affective computing</topic><topic>Artificial neural networks</topic><topic>Auto-encoder</topic><topic>Coders</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>dimensional emotion recognition</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>multimodal emotion recognition</topic><topic>Short term</topic><topic>Streaming media</topic><topic>Streams</topic><topic>Two dimensional displays</topic><topic>Visual signals</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Dung</creatorcontrib><creatorcontrib>Nguyen, Duc Thanh</creatorcontrib><creatorcontrib>Zeng, Rui</creatorcontrib><creatorcontrib>Nguyen, Thanh Thi</creatorcontrib><creatorcontrib>N. Tran, Son</creatorcontrib><creatorcontrib>Nguyen, Thin</creatorcontrib><creatorcontrib>Sridharan, Sridha</creatorcontrib><creatorcontrib>Fookes, Clinton</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Dung</au><au>Nguyen, Duc Thanh</au><au>Zeng, Rui</au><au>Nguyen, Thanh Thi</au><au>N. Tran, Son</au><au>Nguyen, Thin</au><au>Sridharan, Sridha</au><au>Fookes, Clinton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Auto-Encoders With Sequential Learning for Multimodal Dimensional Emotion Recognition</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>24</volume><spage>1313</spage><epage>1324</epage><pages>1313-1324</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Multimodal dimensional emotion recognition has drawn a great attention from the affective computing community and numerous schemes have been extensively investigated, making a significant progress in this area. However, several questions still remain unanswered for most of existing approaches including: (i) how to simultaneously learn compact yet representative features from multimodal data, (ii) how to effectively capture complementary features from multimodal streams, and (iii) how to perform all the tasks in an end-to-end manner. To address these challenges, in this paper, we propose a novel deep neural network architecture consisting of a two-stream auto-encoder and a long short term memory for effectively integrating visual and audio signal streams for emotion recognition. To validate the robustness of our proposed architecture, we carry out extensive experiments on the multimodal emotion in the wild dataset: RECOLA. Experimental results show that the proposed method achieves state-of-the-art recognition performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3063612</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9709-1663</orcidid><orcidid>https://orcid.org/0000-0003-4316-9001</orcidid><orcidid>https://orcid.org/0000-0002-8515-6324</orcidid><orcidid>https://orcid.org/0000-0002-2285-2066</orcidid><orcidid>https://orcid.org/0000-0003-3467-8963</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2022-01, Vol.24, p.1313-1324 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_9374787 |
source | IEEE Xplore (Online service) |
subjects | Affective computing Artificial neural networks Auto-encoder Coders Computer architecture Convolution dimensional emotion recognition Emotion recognition Emotions Feature extraction Long short term memory Machine learning multimodal emotion recognition Short term Streaming media Streams Two dimensional displays Visual signals Visualization |
title | Deep Auto-Encoders With Sequential Learning for Multimodal Dimensional Emotion Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Auto-Encoders%20With%20Sequential%20Learning%20for%20Multimodal%20Dimensional%20Emotion%20Recognition&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Nguyen,%20Dung&rft.date=2022-01-01&rft.volume=24&rft.spage=1313&rft.epage=1324&rft.pages=1313-1324&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3063612&rft_dat=%3Cproquest_ieee_%3E2645245373%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-a9d5f29d88e94c443b4b9024b38d0eac852b8d3c7d47615ad7ebc98d6f744b043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645245373&rft_id=info:pmid/&rft_ieee_id=9374787&rfr_iscdi=true |