Loading…
An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint
At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms a...
Saved in:
Published in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 9 |
creator | Liu, Kun Cui, Yani Ren, Jia Li, Peiran |
description | At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms are inefficient, making BN structure learning difficulty increase. To solve this problem, a BN structure optimization method based on local information is proposed. Firstly, it proposes to construct an initial network framework with local information and uses the Max-Min Parents and Children (MMPC) algorithm to construct an undirected network framework to reduce the search space. Then the particle swarm optimization (PSO) algorithm is used to strengthen the algorithm's optimization ability by constructing a new position and velocity update rule and improve the efficiency of the algorithm. Experimental results show that under the same sample data set, the algorithm can obtain a more accurate BN structure while converging quickly, which verifies the correctness and effectiveness of the algorithm. |
doi_str_mv | 10.1109/ACCESS.2021.3065532 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9375001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9375001</ieee_id><doaj_id>oai_doaj_org_article_678b0d9c1b74404d80d3f889d5861283</doaj_id><sourcerecordid>2503499247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoDDWl-QS6Cnu3qcyUd3SVtDKYpOD2LWUnryvVKrlZOSH59la4JncsMj3lvPl7T3BC8JATrz6uuu91ulxRTsmS4FYLRd80lJa1eMMHa9__VH5rradrjGqpCQl42L6uI1uMxp0fv0A_IJdiDR9snyCO6P5YwhhcoIUW0OuxSDuXXiIaU0Rd49lOAiL778pTyb7Qt-WTLKXu08ZBjiDv0GABtkoUDWsfKGWedLsWpZAixfGwuBjhM_vqcr5qfX28furvF5v7bulttFpZjVRay7grMMt5zy5ylErQC2QpsqSO2B8y1t5i3UgrfW-XBccfsYK3t8aBax66a9azrEuzNMYcR8rNJEMw_IOWdOd9tWql67LQlveQcc6ewY4NS2gnVEqpY1fo0a9WP_Tn5qZh9OuVY1zdUYMa1plzWLjZ32ZymKfvhbSrB5tUzM3tmXj0zZ88q62ZmBe_9G0MzKTAm7C9Q6pRI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499247</pqid></control><display><type>article</type><title>An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint</title><source>IEEE Open Access Journals</source><creator>Liu, Kun ; Cui, Yani ; Ren, Jia ; Li, Peiran</creator><creatorcontrib>Liu, Kun ; Cui, Yani ; Ren, Jia ; Li, Peiran</creatorcontrib><description>At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms are inefficient, making BN structure learning difficulty increase. To solve this problem, a BN structure optimization method based on local information is proposed. Firstly, it proposes to construct an initial network framework with local information and uses the Max-Min Parents and Children (MMPC) algorithm to construct an undirected network framework to reduce the search space. Then the particle swarm optimization (PSO) algorithm is used to strengthen the algorithm's optimization ability by constructing a new position and velocity update rule and improve the efficiency of the algorithm. Experimental results show that under the same sample data set, the algorithm can obtain a more accurate BN structure while converging quickly, which verifies the correctness and effectiveness of the algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3065532</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Bayesian network ; Children ; Construction ; Encoding ; Feature extraction ; local information ; Machine learning ; Optimization ; Particle swarm optimization ; particle swarm optimization algorithm ; Search problems ; Sociology ; Statistics ; structure learning</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3</citedby><cites>FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3</cites><orcidid>0000-0001-9783-8093 ; 0000-0002-8828-9966 ; 0000-0003-4199-5182 ; 0000-0002-0342-0655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9375001$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Cui, Yani</creatorcontrib><creatorcontrib>Ren, Jia</creatorcontrib><creatorcontrib>Li, Peiran</creatorcontrib><title>An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint</title><title>IEEE access</title><addtitle>Access</addtitle><description>At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms are inefficient, making BN structure learning difficulty increase. To solve this problem, a BN structure optimization method based on local information is proposed. Firstly, it proposes to construct an initial network framework with local information and uses the Max-Min Parents and Children (MMPC) algorithm to construct an undirected network framework to reduce the search space. Then the particle swarm optimization (PSO) algorithm is used to strengthen the algorithm's optimization ability by constructing a new position and velocity update rule and improve the efficiency of the algorithm. Experimental results show that under the same sample data set, the algorithm can obtain a more accurate BN structure while converging quickly, which verifies the correctness and effectiveness of the algorithm.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Children</subject><subject>Construction</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>local information</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization algorithm</subject><subject>Search problems</subject><subject>Sociology</subject><subject>Statistics</subject><subject>structure learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoDDWl-QS6Cnu3qcyUd3SVtDKYpOD2LWUnryvVKrlZOSH59la4JncsMj3lvPl7T3BC8JATrz6uuu91ulxRTsmS4FYLRd80lJa1eMMHa9__VH5rradrjGqpCQl42L6uI1uMxp0fv0A_IJdiDR9snyCO6P5YwhhcoIUW0OuxSDuXXiIaU0Rd49lOAiL778pTyb7Qt-WTLKXu08ZBjiDv0GABtkoUDWsfKGWedLsWpZAixfGwuBjhM_vqcr5qfX28furvF5v7bulttFpZjVRay7grMMt5zy5ylErQC2QpsqSO2B8y1t5i3UgrfW-XBccfsYK3t8aBax66a9azrEuzNMYcR8rNJEMw_IOWdOd9tWql67LQlveQcc6ewY4NS2gnVEqpY1fo0a9WP_Tn5qZh9OuVY1zdUYMa1plzWLjZ32ZymKfvhbSrB5tUzM3tmXj0zZ88q62ZmBe_9G0MzKTAm7C9Q6pRI</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Kun</creator><creator>Cui, Yani</creator><creator>Ren, Jia</creator><creator>Li, Peiran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9783-8093</orcidid><orcidid>https://orcid.org/0000-0002-8828-9966</orcidid><orcidid>https://orcid.org/0000-0003-4199-5182</orcidid><orcidid>https://orcid.org/0000-0002-0342-0655</orcidid></search><sort><creationdate>20210101</creationdate><title>An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint</title><author>Liu, Kun ; Cui, Yani ; Ren, Jia ; Li, Peiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Children</topic><topic>Construction</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>local information</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization algorithm</topic><topic>Search problems</topic><topic>Sociology</topic><topic>Statistics</topic><topic>structure learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Cui, Yani</creatorcontrib><creatorcontrib>Ren, Jia</creatorcontrib><creatorcontrib>Li, Peiran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kun</au><au>Cui, Yani</au><au>Ren, Jia</au><au>Li, Peiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms are inefficient, making BN structure learning difficulty increase. To solve this problem, a BN structure optimization method based on local information is proposed. Firstly, it proposes to construct an initial network framework with local information and uses the Max-Min Parents and Children (MMPC) algorithm to construct an undirected network framework to reduce the search space. Then the particle swarm optimization (PSO) algorithm is used to strengthen the algorithm's optimization ability by constructing a new position and velocity update rule and improve the efficiency of the algorithm. Experimental results show that under the same sample data set, the algorithm can obtain a more accurate BN structure while converging quickly, which verifies the correctness and effectiveness of the algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3065532</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9783-8093</orcidid><orcidid>https://orcid.org/0000-0002-8828-9966</orcidid><orcidid>https://orcid.org/0000-0003-4199-5182</orcidid><orcidid>https://orcid.org/0000-0002-0342-0655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021-01, Vol.9, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9375001 |
source | IEEE Open Access Journals |
subjects | Algorithms Bayes methods Bayesian analysis Bayesian network Children Construction Encoding Feature extraction local information Machine learning Optimization Particle swarm optimization particle swarm optimization algorithm Search problems Sociology Statistics structure learning |
title | An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Particle%20Swarm%20Optimization%20Algorithm%20for%20Bayesian%20Network%20Structure%20Learning%20via%20Local%20Information%20Constraint&rft.jtitle=IEEE%20access&rft.au=Liu,%20Kun&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3065532&rft_dat=%3Cproquest_ieee_%3E2503499247%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503499247&rft_id=info:pmid/&rft_ieee_id=9375001&rfr_iscdi=true |