Loading…

An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint

At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021-01, Vol.9, p.1-1
Main Authors: Liu, Kun, Cui, Yani, Ren, Jia, Li, Peiran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3
cites cdi_FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 9
creator Liu, Kun
Cui, Yani
Ren, Jia
Li, Peiran
description At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms are inefficient, making BN structure learning difficulty increase. To solve this problem, a BN structure optimization method based on local information is proposed. Firstly, it proposes to construct an initial network framework with local information and uses the Max-Min Parents and Children (MMPC) algorithm to construct an undirected network framework to reduce the search space. Then the particle swarm optimization (PSO) algorithm is used to strengthen the algorithm's optimization ability by constructing a new position and velocity update rule and improve the efficiency of the algorithm. Experimental results show that under the same sample data set, the algorithm can obtain a more accurate BN structure while converging quickly, which verifies the correctness and effectiveness of the algorithm.
doi_str_mv 10.1109/ACCESS.2021.3065532
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9375001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9375001</ieee_id><doaj_id>oai_doaj_org_article_678b0d9c1b74404d80d3f889d5861283</doaj_id><sourcerecordid>2503499247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoDDWl-QS6Cnu3qcyUd3SVtDKYpOD2LWUnryvVKrlZOSH59la4JncsMj3lvPl7T3BC8JATrz6uuu91ulxRTsmS4FYLRd80lJa1eMMHa9__VH5rradrjGqpCQl42L6uI1uMxp0fv0A_IJdiDR9snyCO6P5YwhhcoIUW0OuxSDuXXiIaU0Rd49lOAiL778pTyb7Qt-WTLKXu08ZBjiDv0GABtkoUDWsfKGWedLsWpZAixfGwuBjhM_vqcr5qfX28furvF5v7bulttFpZjVRay7grMMt5zy5ylErQC2QpsqSO2B8y1t5i3UgrfW-XBccfsYK3t8aBax66a9azrEuzNMYcR8rNJEMw_IOWdOd9tWql67LQlveQcc6ewY4NS2gnVEqpY1fo0a9WP_Tn5qZh9OuVY1zdUYMa1plzWLjZ32ZymKfvhbSrB5tUzM3tmXj0zZ88q62ZmBe_9G0MzKTAm7C9Q6pRI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499247</pqid></control><display><type>article</type><title>An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint</title><source>IEEE Open Access Journals</source><creator>Liu, Kun ; Cui, Yani ; Ren, Jia ; Li, Peiran</creator><creatorcontrib>Liu, Kun ; Cui, Yani ; Ren, Jia ; Li, Peiran</creatorcontrib><description>At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms are inefficient, making BN structure learning difficulty increase. To solve this problem, a BN structure optimization method based on local information is proposed. Firstly, it proposes to construct an initial network framework with local information and uses the Max-Min Parents and Children (MMPC) algorithm to construct an undirected network framework to reduce the search space. Then the particle swarm optimization (PSO) algorithm is used to strengthen the algorithm's optimization ability by constructing a new position and velocity update rule and improve the efficiency of the algorithm. Experimental results show that under the same sample data set, the algorithm can obtain a more accurate BN structure while converging quickly, which verifies the correctness and effectiveness of the algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3065532</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Bayesian network ; Children ; Construction ; Encoding ; Feature extraction ; local information ; Machine learning ; Optimization ; Particle swarm optimization ; particle swarm optimization algorithm ; Search problems ; Sociology ; Statistics ; structure learning</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3</citedby><cites>FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3</cites><orcidid>0000-0001-9783-8093 ; 0000-0002-8828-9966 ; 0000-0003-4199-5182 ; 0000-0002-0342-0655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9375001$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Cui, Yani</creatorcontrib><creatorcontrib>Ren, Jia</creatorcontrib><creatorcontrib>Li, Peiran</creatorcontrib><title>An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint</title><title>IEEE access</title><addtitle>Access</addtitle><description>At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms are inefficient, making BN structure learning difficulty increase. To solve this problem, a BN structure optimization method based on local information is proposed. Firstly, it proposes to construct an initial network framework with local information and uses the Max-Min Parents and Children (MMPC) algorithm to construct an undirected network framework to reduce the search space. Then the particle swarm optimization (PSO) algorithm is used to strengthen the algorithm's optimization ability by constructing a new position and velocity update rule and improve the efficiency of the algorithm. Experimental results show that under the same sample data set, the algorithm can obtain a more accurate BN structure while converging quickly, which verifies the correctness and effectiveness of the algorithm.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Children</subject><subject>Construction</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>local information</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization algorithm</subject><subject>Search problems</subject><subject>Sociology</subject><subject>Statistics</subject><subject>structure learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoDDWl-QS6Cnu3qcyUd3SVtDKYpOD2LWUnryvVKrlZOSH59la4JncsMj3lvPl7T3BC8JATrz6uuu91ulxRTsmS4FYLRd80lJa1eMMHa9__VH5rradrjGqpCQl42L6uI1uMxp0fv0A_IJdiDR9snyCO6P5YwhhcoIUW0OuxSDuXXiIaU0Rd49lOAiL778pTyb7Qt-WTLKXu08ZBjiDv0GABtkoUDWsfKGWedLsWpZAixfGwuBjhM_vqcr5qfX28furvF5v7bulttFpZjVRay7grMMt5zy5ylErQC2QpsqSO2B8y1t5i3UgrfW-XBccfsYK3t8aBax66a9azrEuzNMYcR8rNJEMw_IOWdOd9tWql67LQlveQcc6ewY4NS2gnVEqpY1fo0a9WP_Tn5qZh9OuVY1zdUYMa1plzWLjZ32ZymKfvhbSrB5tUzM3tmXj0zZ88q62ZmBe_9G0MzKTAm7C9Q6pRI</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Kun</creator><creator>Cui, Yani</creator><creator>Ren, Jia</creator><creator>Li, Peiran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9783-8093</orcidid><orcidid>https://orcid.org/0000-0002-8828-9966</orcidid><orcidid>https://orcid.org/0000-0003-4199-5182</orcidid><orcidid>https://orcid.org/0000-0002-0342-0655</orcidid></search><sort><creationdate>20210101</creationdate><title>An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint</title><author>Liu, Kun ; Cui, Yani ; Ren, Jia ; Li, Peiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Children</topic><topic>Construction</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>local information</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization algorithm</topic><topic>Search problems</topic><topic>Sociology</topic><topic>Statistics</topic><topic>structure learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Cui, Yani</creatorcontrib><creatorcontrib>Ren, Jia</creatorcontrib><creatorcontrib>Li, Peiran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kun</au><au>Cui, Yani</au><au>Ren, Jia</au><au>Li, Peiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>At present, in the application of Bayesian network (BN) structure learning algorithm for structure learning, the network scale increases with the increase of number of nodes, resulting in a large scale of structure search space, which is difficult to calculate, and the existing learning algorithms are inefficient, making BN structure learning difficulty increase. To solve this problem, a BN structure optimization method based on local information is proposed. Firstly, it proposes to construct an initial network framework with local information and uses the Max-Min Parents and Children (MMPC) algorithm to construct an undirected network framework to reduce the search space. Then the particle swarm optimization (PSO) algorithm is used to strengthen the algorithm's optimization ability by constructing a new position and velocity update rule and improve the efficiency of the algorithm. Experimental results show that under the same sample data set, the algorithm can obtain a more accurate BN structure while converging quickly, which verifies the correctness and effectiveness of the algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3065532</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9783-8093</orcidid><orcidid>https://orcid.org/0000-0002-8828-9966</orcidid><orcidid>https://orcid.org/0000-0003-4199-5182</orcidid><orcidid>https://orcid.org/0000-0002-0342-0655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9375001
source IEEE Open Access Journals
subjects Algorithms
Bayes methods
Bayesian analysis
Bayesian network
Children
Construction
Encoding
Feature extraction
local information
Machine learning
Optimization
Particle swarm optimization
particle swarm optimization algorithm
Search problems
Sociology
Statistics
structure learning
title An Improved Particle Swarm Optimization Algorithm for Bayesian Network Structure Learning via Local Information Constraint
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Particle%20Swarm%20Optimization%20Algorithm%20for%20Bayesian%20Network%20Structure%20Learning%20via%20Local%20Information%20Constraint&rft.jtitle=IEEE%20access&rft.au=Liu,%20Kun&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3065532&rft_dat=%3Cproquest_ieee_%3E2503499247%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7081a3c34b4c3dc27a98a7650c2d1cba049ec046775ebc8ead4d3cfcccb0f86d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2503499247&rft_id=info:pmid/&rft_ieee_id=9375001&rfr_iscdi=true