Loading…
Compressing the Index on Distributed Data of Sensors
The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional...
Saved in:
Published in: | IEEE sensors journal 2021-05, Vol.21 (10), p.12313-12321 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03 |
container_end_page | 12321 |
container_issue | 10 |
container_start_page | 12313 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Bhasin, Vandana Saxena, P. C. Kumar, Sushil |
description | The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional to the number of bits transmitted on the network; hence sending fewer bits on the communication channel implies lesser energy consumption. This paper works on compressing the index of secure index on distributed data (SIDD) technique; to reduce the number of bits of an index that is transmitted on the communication channel. The objective being to reduce energy consumption of SIDD. In this paper, we have worked to reduce the number of bits of the index sent on the communication channel, deploying difference encoding. The compression mechanism has established an upper bound on the energy consumption whilst all data items were unique. The scheme is scalable and can be deployed for saving energy consumption. |
doi_str_mv | 10.1109/JSEN.2021.3066199 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9380749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9380749</ieee_id><sourcerecordid>2515853617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE_N5yRZSlu1UnRRBXchk7zoFDupyRT039uh4urdxbn3wUHokpIJpcTcPK7mTxNGGJ1wUtfUmCM0olLqiiqhj4fMSSW4ejtFZ6WsCaFGSTVCYpo22wyltN077j8AL7oA3zh1eNaWPrfNroeAZ653OEW8gq6kXM7RSXSfBS7-7hi93s1fpg_V8vl-Mb1dVp4J2Vci-hCb2HAvQ-2Yq4HFoFQdNI_GM-JAae-Flr7hVEkpZIhADBiqjONA-BhdH3a3OX3toPR2nXa527-0TFKpJa-p2lP0QPmcSskQ7Ta3G5d_LCV2kGMHOXaQY__k7DtXh04LAP-84ZooYfgvmTpf7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515853617</pqid></control><display><type>article</type><title>Compressing the Index on Distributed Data of Sensors</title><source>IEEE Xplore (Online service)</source><creator>Bhasin, Vandana ; Saxena, P. C. ; Kumar, Sushil</creator><creatorcontrib>Bhasin, Vandana ; Saxena, P. C. ; Kumar, Sushil</creatorcontrib><description>The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional to the number of bits transmitted on the network; hence sending fewer bits on the communication channel implies lesser energy consumption. This paper works on compressing the index of secure index on distributed data (SIDD) technique; to reduce the number of bits of an index that is transmitted on the communication channel. The objective being to reduce energy consumption of SIDD. In this paper, we have worked to reduce the number of bits of the index sent on the communication channel, deploying difference encoding. The compression mechanism has established an upper bound on the energy consumption whilst all data items were unique. The scheme is scalable and can be deployed for saving energy consumption.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3066199</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communication channels ; Data compression ; Data management ; Data partitioning ; difference encoding ; Distributed databases ; Energy conservation ; Energy consumption ; Filtering algorithms ; Indexes ; indexing ; Mathematical model ; sensor networks ; Sensors ; Upper bounds ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2021-05, Vol.21 (10), p.12313-12321</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03</cites><orcidid>0000-0003-0278-135X ; 0000-0001-9113-2890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9380749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bhasin, Vandana</creatorcontrib><creatorcontrib>Saxena, P. C.</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><title>Compressing the Index on Distributed Data of Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional to the number of bits transmitted on the network; hence sending fewer bits on the communication channel implies lesser energy consumption. This paper works on compressing the index of secure index on distributed data (SIDD) technique; to reduce the number of bits of an index that is transmitted on the communication channel. The objective being to reduce energy consumption of SIDD. In this paper, we have worked to reduce the number of bits of the index sent on the communication channel, deploying difference encoding. The compression mechanism has established an upper bound on the energy consumption whilst all data items were unique. The scheme is scalable and can be deployed for saving energy consumption.</description><subject>Communication channels</subject><subject>Data compression</subject><subject>Data management</subject><subject>Data partitioning</subject><subject>difference encoding</subject><subject>Distributed databases</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Filtering algorithms</subject><subject>Indexes</subject><subject>indexing</subject><subject>Mathematical model</subject><subject>sensor networks</subject><subject>Sensors</subject><subject>Upper bounds</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE_N5yRZSlu1UnRRBXchk7zoFDupyRT039uh4urdxbn3wUHokpIJpcTcPK7mTxNGGJ1wUtfUmCM0olLqiiqhj4fMSSW4ejtFZ6WsCaFGSTVCYpo22wyltN077j8AL7oA3zh1eNaWPrfNroeAZ653OEW8gq6kXM7RSXSfBS7-7hi93s1fpg_V8vl-Mb1dVp4J2Vci-hCb2HAvQ-2Yq4HFoFQdNI_GM-JAae-Flr7hVEkpZIhADBiqjONA-BhdH3a3OX3toPR2nXa527-0TFKpJa-p2lP0QPmcSskQ7Ta3G5d_LCV2kGMHOXaQY__k7DtXh04LAP-84ZooYfgvmTpf7A</recordid><startdate>20210515</startdate><enddate>20210515</enddate><creator>Bhasin, Vandana</creator><creator>Saxena, P. C.</creator><creator>Kumar, Sushil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0278-135X</orcidid><orcidid>https://orcid.org/0000-0001-9113-2890</orcidid></search><sort><creationdate>20210515</creationdate><title>Compressing the Index on Distributed Data of Sensors</title><author>Bhasin, Vandana ; Saxena, P. C. ; Kumar, Sushil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication channels</topic><topic>Data compression</topic><topic>Data management</topic><topic>Data partitioning</topic><topic>difference encoding</topic><topic>Distributed databases</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Filtering algorithms</topic><topic>Indexes</topic><topic>indexing</topic><topic>Mathematical model</topic><topic>sensor networks</topic><topic>Sensors</topic><topic>Upper bounds</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhasin, Vandana</creatorcontrib><creatorcontrib>Saxena, P. C.</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhasin, Vandana</au><au>Saxena, P. C.</au><au>Kumar, Sushil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressing the Index on Distributed Data of Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-05-15</date><risdate>2021</risdate><volume>21</volume><issue>10</issue><spage>12313</spage><epage>12321</epage><pages>12313-12321</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional to the number of bits transmitted on the network; hence sending fewer bits on the communication channel implies lesser energy consumption. This paper works on compressing the index of secure index on distributed data (SIDD) technique; to reduce the number of bits of an index that is transmitted on the communication channel. The objective being to reduce energy consumption of SIDD. In this paper, we have worked to reduce the number of bits of the index sent on the communication channel, deploying difference encoding. The compression mechanism has established an upper bound on the energy consumption whilst all data items were unique. The scheme is scalable and can be deployed for saving energy consumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3066199</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0278-135X</orcidid><orcidid>https://orcid.org/0000-0001-9113-2890</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-05, Vol.21 (10), p.12313-12321 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9380749 |
source | IEEE Xplore (Online service) |
subjects | Communication channels Data compression Data management Data partitioning difference encoding Distributed databases Energy conservation Energy consumption Filtering algorithms Indexes indexing Mathematical model sensor networks Sensors Upper bounds Wireless sensor networks |
title | Compressing the Index on Distributed Data of Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressing%20the%20Index%20on%20Distributed%20Data%20of%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Bhasin,%20Vandana&rft.date=2021-05-15&rft.volume=21&rft.issue=10&rft.spage=12313&rft.epage=12321&rft.pages=12313-12321&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3066199&rft_dat=%3Cproquest_ieee_%3E2515853617%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515853617&rft_id=info:pmid/&rft_ieee_id=9380749&rfr_iscdi=true |