Loading…

Compressing the Index on Distributed Data of Sensors

The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2021-05, Vol.21 (10), p.12313-12321
Main Authors: Bhasin, Vandana, Saxena, P. C., Kumar, Sushil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03
container_end_page 12321
container_issue 10
container_start_page 12313
container_title IEEE sensors journal
container_volume 21
creator Bhasin, Vandana
Saxena, P. C.
Kumar, Sushil
description The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional to the number of bits transmitted on the network; hence sending fewer bits on the communication channel implies lesser energy consumption. This paper works on compressing the index of secure index on distributed data (SIDD) technique; to reduce the number of bits of an index that is transmitted on the communication channel. The objective being to reduce energy consumption of SIDD. In this paper, we have worked to reduce the number of bits of the index sent on the communication channel, deploying difference encoding. The compression mechanism has established an upper bound on the energy consumption whilst all data items were unique. The scheme is scalable and can be deployed for saving energy consumption.
doi_str_mv 10.1109/JSEN.2021.3066199
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9380749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9380749</ieee_id><sourcerecordid>2515853617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE_N5yRZSlu1UnRRBXchk7zoFDupyRT039uh4urdxbn3wUHokpIJpcTcPK7mTxNGGJ1wUtfUmCM0olLqiiqhj4fMSSW4ejtFZ6WsCaFGSTVCYpo22wyltN077j8AL7oA3zh1eNaWPrfNroeAZ653OEW8gq6kXM7RSXSfBS7-7hi93s1fpg_V8vl-Mb1dVp4J2Vci-hCb2HAvQ-2Yq4HFoFQdNI_GM-JAae-Flr7hVEkpZIhADBiqjONA-BhdH3a3OX3toPR2nXa527-0TFKpJa-p2lP0QPmcSskQ7Ta3G5d_LCV2kGMHOXaQY__k7DtXh04LAP-84ZooYfgvmTpf7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515853617</pqid></control><display><type>article</type><title>Compressing the Index on Distributed Data of Sensors</title><source>IEEE Xplore (Online service)</source><creator>Bhasin, Vandana ; Saxena, P. C. ; Kumar, Sushil</creator><creatorcontrib>Bhasin, Vandana ; Saxena, P. C. ; Kumar, Sushil</creatorcontrib><description>The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional to the number of bits transmitted on the network; hence sending fewer bits on the communication channel implies lesser energy consumption. This paper works on compressing the index of secure index on distributed data (SIDD) technique; to reduce the number of bits of an index that is transmitted on the communication channel. The objective being to reduce energy consumption of SIDD. In this paper, we have worked to reduce the number of bits of the index sent on the communication channel, deploying difference encoding. The compression mechanism has established an upper bound on the energy consumption whilst all data items were unique. The scheme is scalable and can be deployed for saving energy consumption.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3066199</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communication channels ; Data compression ; Data management ; Data partitioning ; difference encoding ; Distributed databases ; Energy conservation ; Energy consumption ; Filtering algorithms ; Indexes ; indexing ; Mathematical model ; sensor networks ; Sensors ; Upper bounds ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2021-05, Vol.21 (10), p.12313-12321</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03</cites><orcidid>0000-0003-0278-135X ; 0000-0001-9113-2890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9380749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bhasin, Vandana</creatorcontrib><creatorcontrib>Saxena, P. C.</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><title>Compressing the Index on Distributed Data of Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional to the number of bits transmitted on the network; hence sending fewer bits on the communication channel implies lesser energy consumption. This paper works on compressing the index of secure index on distributed data (SIDD) technique; to reduce the number of bits of an index that is transmitted on the communication channel. The objective being to reduce energy consumption of SIDD. In this paper, we have worked to reduce the number of bits of the index sent on the communication channel, deploying difference encoding. The compression mechanism has established an upper bound on the energy consumption whilst all data items were unique. The scheme is scalable and can be deployed for saving energy consumption.</description><subject>Communication channels</subject><subject>Data compression</subject><subject>Data management</subject><subject>Data partitioning</subject><subject>difference encoding</subject><subject>Distributed databases</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Filtering algorithms</subject><subject>Indexes</subject><subject>indexing</subject><subject>Mathematical model</subject><subject>sensor networks</subject><subject>Sensors</subject><subject>Upper bounds</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE_N5yRZSlu1UnRRBXchk7zoFDupyRT039uh4urdxbn3wUHokpIJpcTcPK7mTxNGGJ1wUtfUmCM0olLqiiqhj4fMSSW4ejtFZ6WsCaFGSTVCYpo22wyltN077j8AL7oA3zh1eNaWPrfNroeAZ653OEW8gq6kXM7RSXSfBS7-7hi93s1fpg_V8vl-Mb1dVp4J2Vci-hCb2HAvQ-2Yq4HFoFQdNI_GM-JAae-Flr7hVEkpZIhADBiqjONA-BhdH3a3OX3toPR2nXa527-0TFKpJa-p2lP0QPmcSskQ7Ta3G5d_LCV2kGMHOXaQY__k7DtXh04LAP-84ZooYfgvmTpf7A</recordid><startdate>20210515</startdate><enddate>20210515</enddate><creator>Bhasin, Vandana</creator><creator>Saxena, P. C.</creator><creator>Kumar, Sushil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0278-135X</orcidid><orcidid>https://orcid.org/0000-0001-9113-2890</orcidid></search><sort><creationdate>20210515</creationdate><title>Compressing the Index on Distributed Data of Sensors</title><author>Bhasin, Vandana ; Saxena, P. C. ; Kumar, Sushil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication channels</topic><topic>Data compression</topic><topic>Data management</topic><topic>Data partitioning</topic><topic>difference encoding</topic><topic>Distributed databases</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Filtering algorithms</topic><topic>Indexes</topic><topic>indexing</topic><topic>Mathematical model</topic><topic>sensor networks</topic><topic>Sensors</topic><topic>Upper bounds</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhasin, Vandana</creatorcontrib><creatorcontrib>Saxena, P. C.</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhasin, Vandana</au><au>Saxena, P. C.</au><au>Kumar, Sushil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressing the Index on Distributed Data of Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-05-15</date><risdate>2021</risdate><volume>21</volume><issue>10</issue><spage>12313</spage><epage>12321</epage><pages>12313-12321</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The most daunting and conflicting challenges accompanying the wireless sensor networks are energy and security. And data aggregation and compression techniques are two of the effective ways to reduce energy consumption. As it is known that the radio transceiver consumes energy which is proportional to the number of bits transmitted on the network; hence sending fewer bits on the communication channel implies lesser energy consumption. This paper works on compressing the index of secure index on distributed data (SIDD) technique; to reduce the number of bits of an index that is transmitted on the communication channel. The objective being to reduce energy consumption of SIDD. In this paper, we have worked to reduce the number of bits of the index sent on the communication channel, deploying difference encoding. The compression mechanism has established an upper bound on the energy consumption whilst all data items were unique. The scheme is scalable and can be deployed for saving energy consumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3066199</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0278-135X</orcidid><orcidid>https://orcid.org/0000-0001-9113-2890</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-05, Vol.21 (10), p.12313-12321
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9380749
source IEEE Xplore (Online service)
subjects Communication channels
Data compression
Data management
Data partitioning
difference encoding
Distributed databases
Energy conservation
Energy consumption
Filtering algorithms
Indexes
indexing
Mathematical model
sensor networks
Sensors
Upper bounds
Wireless sensor networks
title Compressing the Index on Distributed Data of Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressing%20the%20Index%20on%20Distributed%20Data%20of%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Bhasin,%20Vandana&rft.date=2021-05-15&rft.volume=21&rft.issue=10&rft.spage=12313&rft.epage=12321&rft.pages=12313-12321&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3066199&rft_dat=%3Cproquest_ieee_%3E2515853617%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-4fcdfbfb3c5d6a2a6e2fd776d83f9c20ae78cc485cb3175545dfe09e9179a3e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515853617&rft_id=info:pmid/&rft_ieee_id=9380749&rfr_iscdi=true