Loading…

SiC-Based 5-kV Universal Modular Soft-Switching Solid-State Transformer (M-S4T) for Medium-Voltage DC Microgrids and Distribution Grids

Medium-voltage dc (MVdc) grids are attractive for electric aircraft and ship power systems, battery energy storage system (BESS), fast charging electric vehicle (EV), etc. Such EV or BESS applications need isolated bidirectional MVdc to low-voltage dc (LVdc) or LVac converters. However, the existing...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2021-10, Vol.36 (10), p.11326-11343
Main Authors: Zheng, Liran, Han, Xiangyu, An, Zheng, Kandula, Rajendra Prasad, Kandasamy, Karthik, Saeedifard, Maryam, Divan, Deepak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-9bc8235ed7bb16ea5d219243a47bdb48e3076c933070273b55210e409dc8ff893
cites cdi_FETCH-LOGICAL-c429t-9bc8235ed7bb16ea5d219243a47bdb48e3076c933070273b55210e409dc8ff893
container_end_page 11343
container_issue 10
container_start_page 11326
container_title IEEE transactions on power electronics
container_volume 36
creator Zheng, Liran
Han, Xiangyu
An, Zheng
Kandula, Rajendra Prasad
Kandasamy, Karthik
Saeedifard, Maryam
Divan, Deepak
description Medium-voltage dc (MVdc) grids are attractive for electric aircraft and ship power systems, battery energy storage system (BESS), fast charging electric vehicle (EV), etc. Such EV or BESS applications need isolated bidirectional MVdc to low-voltage dc (LVdc) or LVac converters. However, the existing Si-based solutions cannot fulfill the requirements of a high-efficiency and robust converter for MVdc grids. This article presents a 5-kV SiC-based universal modular solid-state transformer (SST). This universal current-source SST can interface either an LVac or LVdc grid with an MVdc grid in single-stage power conversion, while the conventional dual-active bridge (DAB) converter needs an additional inverter. The proposed SST module using 3.3-kV SiC MOSFET s and diodes is bidirectional and can serve as a building block in series or parallel for higher voltage higher power systems. The topology of each module is based on the soft-switching solid-state transformer (S4T) with reduced conduction loss, which features reduced electromagnetic interference electromagnetic interference (EMI) through controlled dv/dt, and high efficiency with full-range zero-voltage switching for main devices and zero-current switching for auxiliary devices. Operation principle of the modular S4T (M-S4T), capacitor voltage balancing control between the cascaded modules, design of components including a medium-voltage (MV) medium-frequency transformer (MFT) to realize a 50-kVA, 5-kV dc to 600 V dc or 480 V ac M-S4T are presented. Importantly, the MV MFT prototype achieves very low leakage inductance (0.13%) and 15-kV insulation with coaxial cables and nanocrystalline cores. The proposed universal modular SST is compared against the DAB solution and verified with dc-dc and dc-ac simulation and 4-kV experimental results. Significantly, the MV experimental results of a modular dc transformer with each module at MVdc are rarely covered in the literature and reported for the first time.
doi_str_mv 10.1109/TPEL.2021.3066908
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9380936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9380936</ieee_id><sourcerecordid>2547643230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-9bc8235ed7bb16ea5d219243a47bdb48e3076c933070273b55210e409dc8ff893</originalsourceid><addsrcrecordid>eNo9kc1u1DAUhS1EJYaWB0BsLNjQhafXP0nsJUx_QJoRSJl2azm2M3XJxK3tgPoEvDYZTcXq6Fx95-peHYTeU1hSCupi-_NqvWTA6JJDXSuQr9CCKkEJUGheowVIWRGpFH-D3ub8AEBFBXSB_rZhRb6a7B2uyK87fDuG3z5lM-BNdNNgEm5jX0j7JxR7H8bdbIfgSFtM8XibzJj7mPY-4c8b0ortOZ4t3ngXpj25i0MxO48vV3gTbIq7FFzGZnT4MuSSQjeVEEd8cxifoZPeDNm_e9FTdHt9tV19I-sfN99XX9bECqYKUZ2VjFfeNV1Ha28qx6highvRdK4T0nNoaqv4LMAa3lUVo-AFKGdl30vFT9HH496YS9DZhuLtvY3j6G3RVCrBaj5Dn47QY4pPk89FP8QpjfNdmlWiqQVnHGaKHqn5tZyT7_VjCnuTnjUFfShFH0rRh1L0Sylz5sMxE7z3_3nFJShe8382_4a2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547643230</pqid></control><display><type>article</type><title>SiC-Based 5-kV Universal Modular Soft-Switching Solid-State Transformer (M-S4T) for Medium-Voltage DC Microgrids and Distribution Grids</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Liran ; Han, Xiangyu ; An, Zheng ; Kandula, Rajendra Prasad ; Kandasamy, Karthik ; Saeedifard, Maryam ; Divan, Deepak</creator><creatorcontrib>Zheng, Liran ; Han, Xiangyu ; An, Zheng ; Kandula, Rajendra Prasad ; Kandasamy, Karthik ; Saeedifard, Maryam ; Divan, Deepak ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>Medium-voltage dc (MVdc) grids are attractive for electric aircraft and ship power systems, battery energy storage system (BESS), fast charging electric vehicle (EV), etc. Such EV or BESS applications need isolated bidirectional MVdc to low-voltage dc (LVdc) or LVac converters. However, the existing Si-based solutions cannot fulfill the requirements of a high-efficiency and robust converter for MVdc grids. This article presents a 5-kV SiC-based universal modular solid-state transformer (SST). This universal current-source SST can interface either an LVac or LVdc grid with an MVdc grid in single-stage power conversion, while the conventional dual-active bridge (DAB) converter needs an additional inverter. The proposed SST module using 3.3-kV SiC MOSFET s and diodes is bidirectional and can serve as a building block in series or parallel for higher voltage higher power systems. The topology of each module is based on the soft-switching solid-state transformer (S4T) with reduced conduction loss, which features reduced electromagnetic interference electromagnetic interference (EMI) through controlled dv/dt, and high efficiency with full-range zero-voltage switching for main devices and zero-current switching for auxiliary devices. Operation principle of the modular S4T (M-S4T), capacitor voltage balancing control between the cascaded modules, design of components including a medium-voltage (MV) medium-frequency transformer (MFT) to realize a 50-kVA, 5-kV dc to 600 V dc or 480 V ac M-S4T are presented. Importantly, the MV MFT prototype achieves very low leakage inductance (0.13%) and 15-kV insulation with coaxial cables and nanocrystalline cores. The proposed universal modular SST is compared against the DAB solution and verified with dc-dc and dc-ac simulation and 4-kV experimental results. Significantly, the MV experimental results of a modular dc transformer with each module at MVdc are rarely covered in the literature and reported for the first time.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3066908</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating current ; Capacitors ; Coaxial cables ; Conduction losses ; Current sources ; Current-source converter (CSC) ; dc transformer (DCT) ; Distributed generation ; Electric bridges ; Electric converters ; Electric potential ; Electric power systems ; Electric vehicle charging ; Electromagnetic interference ; ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ; Energy conversion ; ENERGY STORAGE ; ENGINEERING ; Fly by wire control ; high-frequency link (HFL) ; Inductance ; input-series output-parallel (ISOP) ; Insulation ; isolated bidirectional dc–dc converter (IBdc) ; medium-voltage direct-current network ; Modular equipment ; Modules ; MOSFETs ; power electronic transformer (PET) ; POWER TRANSMISSION AND DISTRIBUTION ; Silicon ; Silicon carbide ; SOLAR ENERGY ; Solid state ; Switching ; Topology ; Transformers ; Voltage ; WIND ENERGY ; Zero current switching ; Zero voltage switching ; zero-current switching (ZCS) ; zero-voltage switching (ZVS)</subject><ispartof>IEEE transactions on power electronics, 2021-10, Vol.36 (10), p.11326-11343</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-9bc8235ed7bb16ea5d219243a47bdb48e3076c933070273b55210e409dc8ff893</citedby><cites>FETCH-LOGICAL-c429t-9bc8235ed7bb16ea5d219243a47bdb48e3076c933070273b55210e409dc8ff893</cites><orcidid>0000-0001-8859-7339 ; 0000-0001-8697-889 ; 0000-0001-8433-2376 ; 0000-0001-7401-7284 ; 0000-0002-8764-2377 ; 0000000188597339 ; 0000000174017284 ; 0000000184332376 ; 0000000287642377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9380936$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1894263$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Liran</creatorcontrib><creatorcontrib>Han, Xiangyu</creatorcontrib><creatorcontrib>An, Zheng</creatorcontrib><creatorcontrib>Kandula, Rajendra Prasad</creatorcontrib><creatorcontrib>Kandasamy, Karthik</creatorcontrib><creatorcontrib>Saeedifard, Maryam</creatorcontrib><creatorcontrib>Divan, Deepak</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>SiC-Based 5-kV Universal Modular Soft-Switching Solid-State Transformer (M-S4T) for Medium-Voltage DC Microgrids and Distribution Grids</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Medium-voltage dc (MVdc) grids are attractive for electric aircraft and ship power systems, battery energy storage system (BESS), fast charging electric vehicle (EV), etc. Such EV or BESS applications need isolated bidirectional MVdc to low-voltage dc (LVdc) or LVac converters. However, the existing Si-based solutions cannot fulfill the requirements of a high-efficiency and robust converter for MVdc grids. This article presents a 5-kV SiC-based universal modular solid-state transformer (SST). This universal current-source SST can interface either an LVac or LVdc grid with an MVdc grid in single-stage power conversion, while the conventional dual-active bridge (DAB) converter needs an additional inverter. The proposed SST module using 3.3-kV SiC MOSFET s and diodes is bidirectional and can serve as a building block in series or parallel for higher voltage higher power systems. The topology of each module is based on the soft-switching solid-state transformer (S4T) with reduced conduction loss, which features reduced electromagnetic interference electromagnetic interference (EMI) through controlled dv/dt, and high efficiency with full-range zero-voltage switching for main devices and zero-current switching for auxiliary devices. Operation principle of the modular S4T (M-S4T), capacitor voltage balancing control between the cascaded modules, design of components including a medium-voltage (MV) medium-frequency transformer (MFT) to realize a 50-kVA, 5-kV dc to 600 V dc or 480 V ac M-S4T are presented. Importantly, the MV MFT prototype achieves very low leakage inductance (0.13%) and 15-kV insulation with coaxial cables and nanocrystalline cores. The proposed universal modular SST is compared against the DAB solution and verified with dc-dc and dc-ac simulation and 4-kV experimental results. Significantly, the MV experimental results of a modular dc transformer with each module at MVdc are rarely covered in the literature and reported for the first time.</description><subject>Alternating current</subject><subject>Capacitors</subject><subject>Coaxial cables</subject><subject>Conduction losses</subject><subject>Current sources</subject><subject>Current-source converter (CSC)</subject><subject>dc transformer (DCT)</subject><subject>Distributed generation</subject><subject>Electric bridges</subject><subject>Electric converters</subject><subject>Electric potential</subject><subject>Electric power systems</subject><subject>Electric vehicle charging</subject><subject>Electromagnetic interference</subject><subject>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</subject><subject>Energy conversion</subject><subject>ENERGY STORAGE</subject><subject>ENGINEERING</subject><subject>Fly by wire control</subject><subject>high-frequency link (HFL)</subject><subject>Inductance</subject><subject>input-series output-parallel (ISOP)</subject><subject>Insulation</subject><subject>isolated bidirectional dc–dc converter (IBdc)</subject><subject>medium-voltage direct-current network</subject><subject>Modular equipment</subject><subject>Modules</subject><subject>MOSFETs</subject><subject>power electronic transformer (PET)</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>SOLAR ENERGY</subject><subject>Solid state</subject><subject>Switching</subject><subject>Topology</subject><subject>Transformers</subject><subject>Voltage</subject><subject>WIND ENERGY</subject><subject>Zero current switching</subject><subject>Zero voltage switching</subject><subject>zero-current switching (ZCS)</subject><subject>zero-voltage switching (ZVS)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kc1u1DAUhS1EJYaWB0BsLNjQhafXP0nsJUx_QJoRSJl2azm2M3XJxK3tgPoEvDYZTcXq6Fx95-peHYTeU1hSCupi-_NqvWTA6JJDXSuQr9CCKkEJUGheowVIWRGpFH-D3ub8AEBFBXSB_rZhRb6a7B2uyK87fDuG3z5lM-BNdNNgEm5jX0j7JxR7H8bdbIfgSFtM8XibzJj7mPY-4c8b0ortOZ4t3ngXpj25i0MxO48vV3gTbIq7FFzGZnT4MuSSQjeVEEd8cxifoZPeDNm_e9FTdHt9tV19I-sfN99XX9bECqYKUZ2VjFfeNV1Ha28qx6highvRdK4T0nNoaqv4LMAa3lUVo-AFKGdl30vFT9HH496YS9DZhuLtvY3j6G3RVCrBaj5Dn47QY4pPk89FP8QpjfNdmlWiqQVnHGaKHqn5tZyT7_VjCnuTnjUFfShFH0rRh1L0Sylz5sMxE7z3_3nFJShe8382_4a2</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zheng, Liran</creator><creator>Han, Xiangyu</creator><creator>An, Zheng</creator><creator>Kandula, Rajendra Prasad</creator><creator>Kandasamy, Karthik</creator><creator>Saeedifard, Maryam</creator><creator>Divan, Deepak</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8859-7339</orcidid><orcidid>https://orcid.org/0000-0001-8697-889</orcidid><orcidid>https://orcid.org/0000-0001-8433-2376</orcidid><orcidid>https://orcid.org/0000-0001-7401-7284</orcidid><orcidid>https://orcid.org/0000-0002-8764-2377</orcidid><orcidid>https://orcid.org/0000000188597339</orcidid><orcidid>https://orcid.org/0000000174017284</orcidid><orcidid>https://orcid.org/0000000184332376</orcidid><orcidid>https://orcid.org/0000000287642377</orcidid></search><sort><creationdate>20211001</creationdate><title>SiC-Based 5-kV Universal Modular Soft-Switching Solid-State Transformer (M-S4T) for Medium-Voltage DC Microgrids and Distribution Grids</title><author>Zheng, Liran ; Han, Xiangyu ; An, Zheng ; Kandula, Rajendra Prasad ; Kandasamy, Karthik ; Saeedifard, Maryam ; Divan, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-9bc8235ed7bb16ea5d219243a47bdb48e3076c933070273b55210e409dc8ff893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternating current</topic><topic>Capacitors</topic><topic>Coaxial cables</topic><topic>Conduction losses</topic><topic>Current sources</topic><topic>Current-source converter (CSC)</topic><topic>dc transformer (DCT)</topic><topic>Distributed generation</topic><topic>Electric bridges</topic><topic>Electric converters</topic><topic>Electric potential</topic><topic>Electric power systems</topic><topic>Electric vehicle charging</topic><topic>Electromagnetic interference</topic><topic>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</topic><topic>Energy conversion</topic><topic>ENERGY STORAGE</topic><topic>ENGINEERING</topic><topic>Fly by wire control</topic><topic>high-frequency link (HFL)</topic><topic>Inductance</topic><topic>input-series output-parallel (ISOP)</topic><topic>Insulation</topic><topic>isolated bidirectional dc–dc converter (IBdc)</topic><topic>medium-voltage direct-current network</topic><topic>Modular equipment</topic><topic>Modules</topic><topic>MOSFETs</topic><topic>power electronic transformer (PET)</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>SOLAR ENERGY</topic><topic>Solid state</topic><topic>Switching</topic><topic>Topology</topic><topic>Transformers</topic><topic>Voltage</topic><topic>WIND ENERGY</topic><topic>Zero current switching</topic><topic>Zero voltage switching</topic><topic>zero-current switching (ZCS)</topic><topic>zero-voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Liran</creatorcontrib><creatorcontrib>Han, Xiangyu</creatorcontrib><creatorcontrib>An, Zheng</creatorcontrib><creatorcontrib>Kandula, Rajendra Prasad</creatorcontrib><creatorcontrib>Kandasamy, Karthik</creatorcontrib><creatorcontrib>Saeedifard, Maryam</creatorcontrib><creatorcontrib>Divan, Deepak</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Liran</au><au>Han, Xiangyu</au><au>An, Zheng</au><au>Kandula, Rajendra Prasad</au><au>Kandasamy, Karthik</au><au>Saeedifard, Maryam</au><au>Divan, Deepak</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SiC-Based 5-kV Universal Modular Soft-Switching Solid-State Transformer (M-S4T) for Medium-Voltage DC Microgrids and Distribution Grids</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>36</volume><issue>10</issue><spage>11326</spage><epage>11343</epage><pages>11326-11343</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Medium-voltage dc (MVdc) grids are attractive for electric aircraft and ship power systems, battery energy storage system (BESS), fast charging electric vehicle (EV), etc. Such EV or BESS applications need isolated bidirectional MVdc to low-voltage dc (LVdc) or LVac converters. However, the existing Si-based solutions cannot fulfill the requirements of a high-efficiency and robust converter for MVdc grids. This article presents a 5-kV SiC-based universal modular solid-state transformer (SST). This universal current-source SST can interface either an LVac or LVdc grid with an MVdc grid in single-stage power conversion, while the conventional dual-active bridge (DAB) converter needs an additional inverter. The proposed SST module using 3.3-kV SiC MOSFET s and diodes is bidirectional and can serve as a building block in series or parallel for higher voltage higher power systems. The topology of each module is based on the soft-switching solid-state transformer (S4T) with reduced conduction loss, which features reduced electromagnetic interference electromagnetic interference (EMI) through controlled dv/dt, and high efficiency with full-range zero-voltage switching for main devices and zero-current switching for auxiliary devices. Operation principle of the modular S4T (M-S4T), capacitor voltage balancing control between the cascaded modules, design of components including a medium-voltage (MV) medium-frequency transformer (MFT) to realize a 50-kVA, 5-kV dc to 600 V dc or 480 V ac M-S4T are presented. Importantly, the MV MFT prototype achieves very low leakage inductance (0.13%) and 15-kV insulation with coaxial cables and nanocrystalline cores. The proposed universal modular SST is compared against the DAB solution and verified with dc-dc and dc-ac simulation and 4-kV experimental results. Significantly, the MV experimental results of a modular dc transformer with each module at MVdc are rarely covered in the literature and reported for the first time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3066908</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8859-7339</orcidid><orcidid>https://orcid.org/0000-0001-8697-889</orcidid><orcidid>https://orcid.org/0000-0001-8433-2376</orcidid><orcidid>https://orcid.org/0000-0001-7401-7284</orcidid><orcidid>https://orcid.org/0000-0002-8764-2377</orcidid><orcidid>https://orcid.org/0000000188597339</orcidid><orcidid>https://orcid.org/0000000174017284</orcidid><orcidid>https://orcid.org/0000000184332376</orcidid><orcidid>https://orcid.org/0000000287642377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2021-10, Vol.36 (10), p.11326-11343
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9380936
source IEEE Electronic Library (IEL) Journals
subjects Alternating current
Capacitors
Coaxial cables
Conduction losses
Current sources
Current-source converter (CSC)
dc transformer (DCT)
Distributed generation
Electric bridges
Electric converters
Electric potential
Electric power systems
Electric vehicle charging
Electromagnetic interference
ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
Energy conversion
ENERGY STORAGE
ENGINEERING
Fly by wire control
high-frequency link (HFL)
Inductance
input-series output-parallel (ISOP)
Insulation
isolated bidirectional dc–dc converter (IBdc)
medium-voltage direct-current network
Modular equipment
Modules
MOSFETs
power electronic transformer (PET)
POWER TRANSMISSION AND DISTRIBUTION
Silicon
Silicon carbide
SOLAR ENERGY
Solid state
Switching
Topology
Transformers
Voltage
WIND ENERGY
Zero current switching
Zero voltage switching
zero-current switching (ZCS)
zero-voltage switching (ZVS)
title SiC-Based 5-kV Universal Modular Soft-Switching Solid-State Transformer (M-S4T) for Medium-Voltage DC Microgrids and Distribution Grids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SiC-Based%205-kV%20Universal%20Modular%20Soft-Switching%20Solid-State%20Transformer%20(M-S4T)%20for%20Medium-Voltage%20DC%20Microgrids%20and%20Distribution%20Grids&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Zheng,%20Liran&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2021-10-01&rft.volume=36&rft.issue=10&rft.spage=11326&rft.epage=11343&rft.pages=11326-11343&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3066908&rft_dat=%3Cproquest_ieee_%3E2547643230%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-9bc8235ed7bb16ea5d219243a47bdb48e3076c933070273b55210e409dc8ff893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2547643230&rft_id=info:pmid/&rft_ieee_id=9380936&rfr_iscdi=true