Loading…
Qualification of 3-D Printed Mortar With Electrical Conductivity Measurements
Additive manufacturing (AM) or 3-D printing of concrete allows for construction of arbitrary shape structures without a mold. Since reproducibility of 3-D printed concrete is lower than that of conventional fabrication, each 3-D printed structure should be monitored for proper curing. Conventional q...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2021-01, Vol.70, p.1-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Additive manufacturing (AM) or 3-D printing of concrete allows for construction of arbitrary shape structures without a mold. Since reproducibility of 3-D printed concrete is lower than that of conventional fabrication, each 3-D printed structure should be monitored for proper curing. Conventional qualification of concrete is based on several tests, including destructive compressive strength measurements. Because a structure is 3-D printed layer-by-layer, the surfaces of AM concrete structures have significant surface roughness. This limits the applicability of conventional nondestructive testing methods. We investigated qualification of 3-D printed mortar by monitoring curing with nondestructive electrical conductivity measurements. Bulk resistance of concrete was extracted from electrochemical impedance spectroscopy (EIS) measurements made using custom flexible self-adhesive electrodes, which contour to rough surfaces. We show that bulk resistivity of concrete increases linearly with time. This allows for developing a calibration curve for compressive strength lookup from nondestructive electrical conductivity measurements. Conductivity measurements also allow for estimation of formation factor, which is an indicator of mortar permeability. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2021.3067222 |