Loading…
Syntax-aware Natural Language Inference with Graph Matching Networks
The task of entailment judgment aims to determine whether a hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given a premise. While previous methods strike successful in several benchmarks and even exceed the human baseline, recent researches show that it remains arg...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 90 |
container_issue | |
container_start_page | 85 |
container_title | |
container_volume | |
creator | Lin, Yan-Tong Wu, Meng-Tse Su, Keh-Yih |
description | The task of entailment judgment aims to determine whether a hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given a premise. While previous methods strike successful in several benchmarks and even exceed the human baseline, recent researches show that it remains arguable if the methods learn the statistical bias in the datasets. In this paper, we propose the syntax-aware Natural Language Inference (SynNLI) model, which utilizes graph matching networks to obtain syntax-guided contextualized representation while aligning the premise and the hypothesis accordingly. We show that the proposed method outperforms multiple baseline models on MNLI develop set, and visualize the model internal behavior. |
doi_str_mv | 10.1109/TAAI51410.2020.00024 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9382461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9382461</ieee_id><sourcerecordid>9382461</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-af6a3b06465cde5d52e4b0aacc44fae5bf079ca65bf4e5dce442d97273da7d433</originalsourceid><addsrcrecordid>eNotj81OwzAQhA0SElXJE8DBL5CytjdOcowKlEihHCjnauNsfqCEykkV-vZEgtPM6BuNNELcKVgpBen9LsvySOEcNWhYAYDGCxGkcaKsjRBMAupSLLSJbWgTjdciGIaPuWY0oErUQjy8nfuRfkKayLPc0njydJAF9c2JGpZ5X7Pn3rGcurGVG0_HVr7Q6Nqub-SWx-nbfw434qqmw8DBvy7F-9Pjbv0cFq-bfJ0VYafBjCHVlkwJFm3kKo6qSDOWQOQcYk0clTXEqSM7G5yxY0RdpbGOTUVxhcYsxe3fbsfM-6Pvvsif96mZn1llfgGjSE0k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Syntax-aware Natural Language Inference with Graph Matching Networks</title><source>IEEE Xplore All Conference Series</source><creator>Lin, Yan-Tong ; Wu, Meng-Tse ; Su, Keh-Yih</creator><creatorcontrib>Lin, Yan-Tong ; Wu, Meng-Tse ; Su, Keh-Yih</creatorcontrib><description>The task of entailment judgment aims to determine whether a hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given a premise. While previous methods strike successful in several benchmarks and even exceed the human baseline, recent researches show that it remains arguable if the methods learn the statistical bias in the datasets. In this paper, we propose the syntax-aware Natural Language Inference (SynNLI) model, which utilizes graph matching networks to obtain syntax-guided contextualized representation while aligning the premise and the hypothesis accordingly. We show that the proposed method outperforms multiple baseline models on MNLI develop set, and visualize the model internal behavior.</description><identifier>EISSN: 2376-6824</identifier><identifier>EISBN: 9781665403801</identifier><identifier>EISBN: 1665403802</identifier><identifier>DOI: 10.1109/TAAI51410.2020.00024</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Benchmark testing ; Context modeling ; dependency tree ; Encoding ; graph neural networks ; natural language inference ; Natural languages ; recognize textual entailment ; Task analysis ; Visualization</subject><ispartof>2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), 2020, p.85-90</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9382461$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9382461$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Yan-Tong</creatorcontrib><creatorcontrib>Wu, Meng-Tse</creatorcontrib><creatorcontrib>Su, Keh-Yih</creatorcontrib><title>Syntax-aware Natural Language Inference with Graph Matching Networks</title><title>2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)</title><addtitle>TAAI</addtitle><description>The task of entailment judgment aims to determine whether a hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given a premise. While previous methods strike successful in several benchmarks and even exceed the human baseline, recent researches show that it remains arguable if the methods learn the statistical bias in the datasets. In this paper, we propose the syntax-aware Natural Language Inference (SynNLI) model, which utilizes graph matching networks to obtain syntax-guided contextualized representation while aligning the premise and the hypothesis accordingly. We show that the proposed method outperforms multiple baseline models on MNLI develop set, and visualize the model internal behavior.</description><subject>Artificial intelligence</subject><subject>Benchmark testing</subject><subject>Context modeling</subject><subject>dependency tree</subject><subject>Encoding</subject><subject>graph neural networks</subject><subject>natural language inference</subject><subject>Natural languages</subject><subject>recognize textual entailment</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>2376-6824</issn><isbn>9781665403801</isbn><isbn>1665403802</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81OwzAQhA0SElXJE8DBL5CytjdOcowKlEihHCjnauNsfqCEykkV-vZEgtPM6BuNNELcKVgpBen9LsvySOEcNWhYAYDGCxGkcaKsjRBMAupSLLSJbWgTjdciGIaPuWY0oErUQjy8nfuRfkKayLPc0njydJAF9c2JGpZ5X7Pn3rGcurGVG0_HVr7Q6Nqub-SWx-nbfw434qqmw8DBvy7F-9Pjbv0cFq-bfJ0VYafBjCHVlkwJFm3kKo6qSDOWQOQcYk0clTXEqSM7G5yxY0RdpbGOTUVxhcYsxe3fbsfM-6Pvvsif96mZn1llfgGjSE0k</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Lin, Yan-Tong</creator><creator>Wu, Meng-Tse</creator><creator>Su, Keh-Yih</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202012</creationdate><title>Syntax-aware Natural Language Inference with Graph Matching Networks</title><author>Lin, Yan-Tong ; Wu, Meng-Tse ; Su, Keh-Yih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-af6a3b06465cde5d52e4b0aacc44fae5bf079ca65bf4e5dce442d97273da7d433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Benchmark testing</topic><topic>Context modeling</topic><topic>dependency tree</topic><topic>Encoding</topic><topic>graph neural networks</topic><topic>natural language inference</topic><topic>Natural languages</topic><topic>recognize textual entailment</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yan-Tong</creatorcontrib><creatorcontrib>Wu, Meng-Tse</creatorcontrib><creatorcontrib>Su, Keh-Yih</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Yan-Tong</au><au>Wu, Meng-Tse</au><au>Su, Keh-Yih</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Syntax-aware Natural Language Inference with Graph Matching Networks</atitle><btitle>2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)</btitle><stitle>TAAI</stitle><date>2020-12</date><risdate>2020</risdate><spage>85</spage><epage>90</epage><pages>85-90</pages><eissn>2376-6824</eissn><eisbn>9781665403801</eisbn><eisbn>1665403802</eisbn><coden>IEEPAD</coden><abstract>The task of entailment judgment aims to determine whether a hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given a premise. While previous methods strike successful in several benchmarks and even exceed the human baseline, recent researches show that it remains arguable if the methods learn the statistical bias in the datasets. In this paper, we propose the syntax-aware Natural Language Inference (SynNLI) model, which utilizes graph matching networks to obtain syntax-guided contextualized representation while aligning the premise and the hypothesis accordingly. We show that the proposed method outperforms multiple baseline models on MNLI develop set, and visualize the model internal behavior.</abstract><pub>IEEE</pub><doi>10.1109/TAAI51410.2020.00024</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2376-6824 |
ispartof | 2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), 2020, p.85-90 |
issn | 2376-6824 |
language | eng |
recordid | cdi_ieee_primary_9382461 |
source | IEEE Xplore All Conference Series |
subjects | Artificial intelligence Benchmark testing Context modeling dependency tree Encoding graph neural networks natural language inference Natural languages recognize textual entailment Task analysis Visualization |
title | Syntax-aware Natural Language Inference with Graph Matching Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Syntax-aware%20Natural%20Language%20Inference%20with%20Graph%20Matching%20Networks&rft.btitle=2020%20International%20Conference%20on%20Technologies%20and%20Applications%20of%20Artificial%20Intelligence%20(TAAI)&rft.au=Lin,%20Yan-Tong&rft.date=2020-12&rft.spage=85&rft.epage=90&rft.pages=85-90&rft.eissn=2376-6824&rft.coden=IEEPAD&rft_id=info:doi/10.1109/TAAI51410.2020.00024&rft.eisbn=9781665403801&rft.eisbn_list=1665403802&rft_dat=%3Cieee_CHZPO%3E9382461%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-af6a3b06465cde5d52e4b0aacc44fae5bf079ca65bf4e5dce442d97273da7d433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9382461&rfr_iscdi=true |