Loading…
New Three-Pole Combined Radial-Axial Magnetic Bearing for Industrial Bearingless Motor Systems
This article investigates combined radial-axial magneticbearing (CRAMB) technology as an enabling component for shafted bearingless motor systems. The unique requirements of high-speed bearingless motors designed for significant power levels are used to guide a literature review on CRAMB designs. Fu...
Saved in:
Published in: | IEEE transactions on industry applications 2021-11, Vol.57 (6), p.6754-6764 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article investigates combined radial-axial magneticbearing (CRAMB) technology as an enabling component for shafted bearingless motor systems. The unique requirements of high-speed bearingless motors designed for significant power levels are used to guide a literature review on CRAMB designs. Fundamental bearing topology aspects are identified and compared. Based on the outcome of this review, a new CRAMB topology is proposed and developed to meet the needs of a bearingless motor. Key features of the proposed design include a three-pole radial force stage (driven by a three-phase motor drive) and utilization of an optimal bias flux that improves radial force density by approximately 15% (improved rotor dynamics). A full design procedure for the new bearing topology is developed and it is shown that compared to a conventional four-pole side-by-side CRAMB, this topology decreases the bearing shaft length and requires two fewer power electronic switches (6 instead of 8). The new bearing is validated via finite-element analysis and experimental test results. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2021.3068089 |