Loading…

Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application

A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triod...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2021-04, Vol.49 (4), p.1468-1474
Main Authors: Hu, Linlin, Ma, Guowu, Sun, Dimin, Huang, Qili, Zhuo, Tingting, Gong, Shenggang, Jiang, Yi, Zeng, Zaojin, Ma, Qiaosheng, Lei, Wenqiang, Song, Rui, Hu, Peng, Hu, Xinrui, Guo, Zixing, Ku, Xinyu, Tan, Zhiyuan, Chen, Hongbin, Meng, Fanbao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133
cites cdi_FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133
container_end_page 1474
container_issue 4
container_start_page 1468
container_title IEEE transactions on plasma science
container_volume 49
creator Hu, Linlin
Ma, Guowu
Sun, Dimin
Huang, Qili
Zhuo, Tingting
Gong, Shenggang
Jiang, Yi
Zeng, Zaojin
Ma, Qiaosheng
Lei, Wenqiang
Song, Rui
Hu, Peng
Hu, Xinrui
Guo, Zixing
Ku, Xinyu
Tan, Zhiyuan
Chen, Hongbin
Meng, Fanbao
description A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triode magnetron injection gun, a TE02-mode cylindrical cavity, a built-in quasi-optical mode converter, a single-stage depressed collector, and a single-disk boron nitride window. The gyrotron system features a match optical unit, a superconducting magnet, a calorimetric dummy load, a high-voltage power supply system, and other auxiliary components, was delivered to the EXL50 site. In the acceptance test, five successive shots of each power over 50 kW were generated for 30 s at 28 GHz. An average power of 51 kW, a maximum power of 55 kW, and 46% overall efficiency were obtained. The gyrotron system was assembled in the EXL50 and applied to a plasma discharge experiment. The gyrotron is the first practical domestic gyrotron produced for fusion applications in China. The design and test results of this instrument are presented in this article.
doi_str_mv 10.1109/TPS.2021.3066553
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9387773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9387773</ieee_id><sourcerecordid>2512223109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC52wnmexucizVfkBBoRWPYT8S2No2a7IV6q83pcXTDMPzzgwPIY8MUsZAjdbvq5QDZylCnmcZXpEBU6iowiK7JgMAhRQlw1tyF8IGgIkM-IAsXsyP2bpuZ_Z94mxSJlzS2fx3lAH9-hwh0JDMjt713u2T1TH0ZpdY55PpIbRxMu66bVuXfezvyY0tt8E8XOqQfExf15M5Xb7NFpPxktZcsZ4WppRNXYOA2tpKQgWykLbCPD5qG56zBpQQUjRSgYGSi5rLyjaNlZUQwBCH5Pm8t_Pu-2BCrzfu4PfxpOYZ45xj1BEpOFO1dyF4Y3Xn213pj5qBPgnTUZg-CdMXYTHydI60xph_XKEsigLxD9mbZF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512223109</pqid></control><display><type>article</type><title>Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hu, Linlin ; Ma, Guowu ; Sun, Dimin ; Huang, Qili ; Zhuo, Tingting ; Gong, Shenggang ; Jiang, Yi ; Zeng, Zaojin ; Ma, Qiaosheng ; Lei, Wenqiang ; Song, Rui ; Hu, Peng ; Hu, Xinrui ; Guo, Zixing ; Ku, Xinyu ; Tan, Zhiyuan ; Chen, Hongbin ; Meng, Fanbao</creator><creatorcontrib>Hu, Linlin ; Ma, Guowu ; Sun, Dimin ; Huang, Qili ; Zhuo, Tingting ; Gong, Shenggang ; Jiang, Yi ; Zeng, Zaojin ; Ma, Qiaosheng ; Lei, Wenqiang ; Song, Rui ; Hu, Peng ; Hu, Xinrui ; Guo, Zixing ; Ku, Xinyu ; Tan, Zhiyuan ; Chen, Hongbin ; Meng, Fanbao</creatorcontrib><description>A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triode magnetron injection gun, a TE02-mode cylindrical cavity, a built-in quasi-optical mode converter, a single-stage depressed collector, and a single-disk boron nitride window. The gyrotron system features a match optical unit, a superconducting magnet, a calorimetric dummy load, a high-voltage power supply system, and other auxiliary components, was delivered to the EXL50 site. In the acceptance test, five successive shots of each power over 50 kW were generated for 30 s at 28 GHz. An average power of 51 kW, a maximum power of 55 kW, and 46% overall efficiency were obtained. The gyrotron system was assembled in the EXL50 and applied to a plasma discharge experiment. The gyrotron is the first practical domestic gyrotron produced for fusion applications in China. The design and test results of this instrument are presented in this article.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2021.3066553</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceptance tests ; Boron ; Boron nitride ; Converters ; Cyclotrons ; Electric power supplies ; Electron cyclotron heating (ECH) ; Energy conversion efficiency ; EXL50 ; fusion ; gyrotron ; Gyrotrons ; Heating systems ; Loading ; Manganese ; Maximum power ; Output ; Plasma heating ; Plasma jets ; Plasmas ; Superconducting magnets ; Tokamaks</subject><ispartof>IEEE transactions on plasma science, 2021-04, Vol.49 (4), p.1468-1474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133</citedby><cites>FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133</cites><orcidid>0000-0001-8449-309X ; 0000-0002-7564-5028 ; 0000-0002-6586-6441 ; 0000-0003-2115-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9387773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hu, Linlin</creatorcontrib><creatorcontrib>Ma, Guowu</creatorcontrib><creatorcontrib>Sun, Dimin</creatorcontrib><creatorcontrib>Huang, Qili</creatorcontrib><creatorcontrib>Zhuo, Tingting</creatorcontrib><creatorcontrib>Gong, Shenggang</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Zeng, Zaojin</creatorcontrib><creatorcontrib>Ma, Qiaosheng</creatorcontrib><creatorcontrib>Lei, Wenqiang</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Hu, Xinrui</creatorcontrib><creatorcontrib>Guo, Zixing</creatorcontrib><creatorcontrib>Ku, Xinyu</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Hongbin</creatorcontrib><creatorcontrib>Meng, Fanbao</creatorcontrib><title>Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triode magnetron injection gun, a TE02-mode cylindrical cavity, a built-in quasi-optical mode converter, a single-stage depressed collector, and a single-disk boron nitride window. The gyrotron system features a match optical unit, a superconducting magnet, a calorimetric dummy load, a high-voltage power supply system, and other auxiliary components, was delivered to the EXL50 site. In the acceptance test, five successive shots of each power over 50 kW were generated for 30 s at 28 GHz. An average power of 51 kW, a maximum power of 55 kW, and 46% overall efficiency were obtained. The gyrotron system was assembled in the EXL50 and applied to a plasma discharge experiment. The gyrotron is the first practical domestic gyrotron produced for fusion applications in China. The design and test results of this instrument are presented in this article.</description><subject>Acceptance tests</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Converters</subject><subject>Cyclotrons</subject><subject>Electric power supplies</subject><subject>Electron cyclotron heating (ECH)</subject><subject>Energy conversion efficiency</subject><subject>EXL50</subject><subject>fusion</subject><subject>gyrotron</subject><subject>Gyrotrons</subject><subject>Heating systems</subject><subject>Loading</subject><subject>Manganese</subject><subject>Maximum power</subject><subject>Output</subject><subject>Plasma heating</subject><subject>Plasma jets</subject><subject>Plasmas</subject><subject>Superconducting magnets</subject><subject>Tokamaks</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuC52wnmexucizVfkBBoRWPYT8S2No2a7IV6q83pcXTDMPzzgwPIY8MUsZAjdbvq5QDZylCnmcZXpEBU6iowiK7JgMAhRQlw1tyF8IGgIkM-IAsXsyP2bpuZ_Z94mxSJlzS2fx3lAH9-hwh0JDMjt713u2T1TH0ZpdY55PpIbRxMu66bVuXfezvyY0tt8E8XOqQfExf15M5Xb7NFpPxktZcsZ4WppRNXYOA2tpKQgWykLbCPD5qG56zBpQQUjRSgYGSi5rLyjaNlZUQwBCH5Pm8t_Pu-2BCrzfu4PfxpOYZ45xj1BEpOFO1dyF4Y3Xn213pj5qBPgnTUZg-CdMXYTHydI60xph_XKEsigLxD9mbZF8</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hu, Linlin</creator><creator>Ma, Guowu</creator><creator>Sun, Dimin</creator><creator>Huang, Qili</creator><creator>Zhuo, Tingting</creator><creator>Gong, Shenggang</creator><creator>Jiang, Yi</creator><creator>Zeng, Zaojin</creator><creator>Ma, Qiaosheng</creator><creator>Lei, Wenqiang</creator><creator>Song, Rui</creator><creator>Hu, Peng</creator><creator>Hu, Xinrui</creator><creator>Guo, Zixing</creator><creator>Ku, Xinyu</creator><creator>Tan, Zhiyuan</creator><creator>Chen, Hongbin</creator><creator>Meng, Fanbao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8449-309X</orcidid><orcidid>https://orcid.org/0000-0002-7564-5028</orcidid><orcidid>https://orcid.org/0000-0002-6586-6441</orcidid><orcidid>https://orcid.org/0000-0003-2115-6138</orcidid></search><sort><creationdate>20210401</creationdate><title>Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application</title><author>Hu, Linlin ; Ma, Guowu ; Sun, Dimin ; Huang, Qili ; Zhuo, Tingting ; Gong, Shenggang ; Jiang, Yi ; Zeng, Zaojin ; Ma, Qiaosheng ; Lei, Wenqiang ; Song, Rui ; Hu, Peng ; Hu, Xinrui ; Guo, Zixing ; Ku, Xinyu ; Tan, Zhiyuan ; Chen, Hongbin ; Meng, Fanbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceptance tests</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Converters</topic><topic>Cyclotrons</topic><topic>Electric power supplies</topic><topic>Electron cyclotron heating (ECH)</topic><topic>Energy conversion efficiency</topic><topic>EXL50</topic><topic>fusion</topic><topic>gyrotron</topic><topic>Gyrotrons</topic><topic>Heating systems</topic><topic>Loading</topic><topic>Manganese</topic><topic>Maximum power</topic><topic>Output</topic><topic>Plasma heating</topic><topic>Plasma jets</topic><topic>Plasmas</topic><topic>Superconducting magnets</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Linlin</creatorcontrib><creatorcontrib>Ma, Guowu</creatorcontrib><creatorcontrib>Sun, Dimin</creatorcontrib><creatorcontrib>Huang, Qili</creatorcontrib><creatorcontrib>Zhuo, Tingting</creatorcontrib><creatorcontrib>Gong, Shenggang</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Zeng, Zaojin</creatorcontrib><creatorcontrib>Ma, Qiaosheng</creatorcontrib><creatorcontrib>Lei, Wenqiang</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Hu, Xinrui</creatorcontrib><creatorcontrib>Guo, Zixing</creatorcontrib><creatorcontrib>Ku, Xinyu</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Hongbin</creatorcontrib><creatorcontrib>Meng, Fanbao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Linlin</au><au>Ma, Guowu</au><au>Sun, Dimin</au><au>Huang, Qili</au><au>Zhuo, Tingting</au><au>Gong, Shenggang</au><au>Jiang, Yi</au><au>Zeng, Zaojin</au><au>Ma, Qiaosheng</au><au>Lei, Wenqiang</au><au>Song, Rui</au><au>Hu, Peng</au><au>Hu, Xinrui</au><au>Guo, Zixing</au><au>Ku, Xinyu</au><au>Tan, Zhiyuan</au><au>Chen, Hongbin</au><au>Meng, Fanbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>49</volume><issue>4</issue><spage>1468</spage><epage>1474</epage><pages>1468-1474</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triode magnetron injection gun, a TE02-mode cylindrical cavity, a built-in quasi-optical mode converter, a single-stage depressed collector, and a single-disk boron nitride window. The gyrotron system features a match optical unit, a superconducting magnet, a calorimetric dummy load, a high-voltage power supply system, and other auxiliary components, was delivered to the EXL50 site. In the acceptance test, five successive shots of each power over 50 kW were generated for 30 s at 28 GHz. An average power of 51 kW, a maximum power of 55 kW, and 46% overall efficiency were obtained. The gyrotron system was assembled in the EXL50 and applied to a plasma discharge experiment. The gyrotron is the first practical domestic gyrotron produced for fusion applications in China. The design and test results of this instrument are presented in this article.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2021.3066553</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8449-309X</orcidid><orcidid>https://orcid.org/0000-0002-7564-5028</orcidid><orcidid>https://orcid.org/0000-0002-6586-6441</orcidid><orcidid>https://orcid.org/0000-0003-2115-6138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2021-04, Vol.49 (4), p.1468-1474
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_9387773
source IEEE Electronic Library (IEL) Journals
subjects Acceptance tests
Boron
Boron nitride
Converters
Cyclotrons
Electric power supplies
Electron cyclotron heating (ECH)
Energy conversion efficiency
EXL50
fusion
gyrotron
Gyrotrons
Heating systems
Loading
Manganese
Maximum power
Output
Plasma heating
Plasma jets
Plasmas
Superconducting magnets
Tokamaks
title Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%2028-GHz/50-kW/30-s%20Gyrotron%20System%20for%20Fusion%20Application&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Hu,%20Linlin&rft.date=2021-04-01&rft.volume=49&rft.issue=4&rft.spage=1468&rft.epage=1474&rft.pages=1468-1474&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2021.3066553&rft_dat=%3Cproquest_ieee_%3E2512223109%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512223109&rft_id=info:pmid/&rft_ieee_id=9387773&rfr_iscdi=true