Loading…
Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application
A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triod...
Saved in:
Published in: | IEEE transactions on plasma science 2021-04, Vol.49 (4), p.1468-1474 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133 |
container_end_page | 1474 |
container_issue | 4 |
container_start_page | 1468 |
container_title | IEEE transactions on plasma science |
container_volume | 49 |
creator | Hu, Linlin Ma, Guowu Sun, Dimin Huang, Qili Zhuo, Tingting Gong, Shenggang Jiang, Yi Zeng, Zaojin Ma, Qiaosheng Lei, Wenqiang Song, Rui Hu, Peng Hu, Xinrui Guo, Zixing Ku, Xinyu Tan, Zhiyuan Chen, Hongbin Meng, Fanbao |
description | A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triode magnetron injection gun, a TE02-mode cylindrical cavity, a built-in quasi-optical mode converter, a single-stage depressed collector, and a single-disk boron nitride window. The gyrotron system features a match optical unit, a superconducting magnet, a calorimetric dummy load, a high-voltage power supply system, and other auxiliary components, was delivered to the EXL50 site. In the acceptance test, five successive shots of each power over 50 kW were generated for 30 s at 28 GHz. An average power of 51 kW, a maximum power of 55 kW, and 46% overall efficiency were obtained. The gyrotron system was assembled in the EXL50 and applied to a plasma discharge experiment. The gyrotron is the first practical domestic gyrotron produced for fusion applications in China. The design and test results of this instrument are presented in this article. |
doi_str_mv | 10.1109/TPS.2021.3066553 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9387773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9387773</ieee_id><sourcerecordid>2512223109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC52wnmexucizVfkBBoRWPYT8S2No2a7IV6q83pcXTDMPzzgwPIY8MUsZAjdbvq5QDZylCnmcZXpEBU6iowiK7JgMAhRQlw1tyF8IGgIkM-IAsXsyP2bpuZ_Z94mxSJlzS2fx3lAH9-hwh0JDMjt713u2T1TH0ZpdY55PpIbRxMu66bVuXfezvyY0tt8E8XOqQfExf15M5Xb7NFpPxktZcsZ4WppRNXYOA2tpKQgWykLbCPD5qG56zBpQQUjRSgYGSi5rLyjaNlZUQwBCH5Pm8t_Pu-2BCrzfu4PfxpOYZ45xj1BEpOFO1dyF4Y3Xn213pj5qBPgnTUZg-CdMXYTHydI60xph_XKEsigLxD9mbZF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512223109</pqid></control><display><type>article</type><title>Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hu, Linlin ; Ma, Guowu ; Sun, Dimin ; Huang, Qili ; Zhuo, Tingting ; Gong, Shenggang ; Jiang, Yi ; Zeng, Zaojin ; Ma, Qiaosheng ; Lei, Wenqiang ; Song, Rui ; Hu, Peng ; Hu, Xinrui ; Guo, Zixing ; Ku, Xinyu ; Tan, Zhiyuan ; Chen, Hongbin ; Meng, Fanbao</creator><creatorcontrib>Hu, Linlin ; Ma, Guowu ; Sun, Dimin ; Huang, Qili ; Zhuo, Tingting ; Gong, Shenggang ; Jiang, Yi ; Zeng, Zaojin ; Ma, Qiaosheng ; Lei, Wenqiang ; Song, Rui ; Hu, Peng ; Hu, Xinrui ; Guo, Zixing ; Ku, Xinyu ; Tan, Zhiyuan ; Chen, Hongbin ; Meng, Fanbao</creatorcontrib><description>A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triode magnetron injection gun, a TE02-mode cylindrical cavity, a built-in quasi-optical mode converter, a single-stage depressed collector, and a single-disk boron nitride window. The gyrotron system features a match optical unit, a superconducting magnet, a calorimetric dummy load, a high-voltage power supply system, and other auxiliary components, was delivered to the EXL50 site. In the acceptance test, five successive shots of each power over 50 kW were generated for 30 s at 28 GHz. An average power of 51 kW, a maximum power of 55 kW, and 46% overall efficiency were obtained. The gyrotron system was assembled in the EXL50 and applied to a plasma discharge experiment. The gyrotron is the first practical domestic gyrotron produced for fusion applications in China. The design and test results of this instrument are presented in this article.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2021.3066553</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceptance tests ; Boron ; Boron nitride ; Converters ; Cyclotrons ; Electric power supplies ; Electron cyclotron heating (ECH) ; Energy conversion efficiency ; EXL50 ; fusion ; gyrotron ; Gyrotrons ; Heating systems ; Loading ; Manganese ; Maximum power ; Output ; Plasma heating ; Plasma jets ; Plasmas ; Superconducting magnets ; Tokamaks</subject><ispartof>IEEE transactions on plasma science, 2021-04, Vol.49 (4), p.1468-1474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133</citedby><cites>FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133</cites><orcidid>0000-0001-8449-309X ; 0000-0002-7564-5028 ; 0000-0002-6586-6441 ; 0000-0003-2115-6138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9387773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hu, Linlin</creatorcontrib><creatorcontrib>Ma, Guowu</creatorcontrib><creatorcontrib>Sun, Dimin</creatorcontrib><creatorcontrib>Huang, Qili</creatorcontrib><creatorcontrib>Zhuo, Tingting</creatorcontrib><creatorcontrib>Gong, Shenggang</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Zeng, Zaojin</creatorcontrib><creatorcontrib>Ma, Qiaosheng</creatorcontrib><creatorcontrib>Lei, Wenqiang</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Hu, Xinrui</creatorcontrib><creatorcontrib>Guo, Zixing</creatorcontrib><creatorcontrib>Ku, Xinyu</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Hongbin</creatorcontrib><creatorcontrib>Meng, Fanbao</creatorcontrib><title>Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triode magnetron injection gun, a TE02-mode cylindrical cavity, a built-in quasi-optical mode converter, a single-stage depressed collector, and a single-disk boron nitride window. The gyrotron system features a match optical unit, a superconducting magnet, a calorimetric dummy load, a high-voltage power supply system, and other auxiliary components, was delivered to the EXL50 site. In the acceptance test, five successive shots of each power over 50 kW were generated for 30 s at 28 GHz. An average power of 51 kW, a maximum power of 55 kW, and 46% overall efficiency were obtained. The gyrotron system was assembled in the EXL50 and applied to a plasma discharge experiment. The gyrotron is the first practical domestic gyrotron produced for fusion applications in China. The design and test results of this instrument are presented in this article.</description><subject>Acceptance tests</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Converters</subject><subject>Cyclotrons</subject><subject>Electric power supplies</subject><subject>Electron cyclotron heating (ECH)</subject><subject>Energy conversion efficiency</subject><subject>EXL50</subject><subject>fusion</subject><subject>gyrotron</subject><subject>Gyrotrons</subject><subject>Heating systems</subject><subject>Loading</subject><subject>Manganese</subject><subject>Maximum power</subject><subject>Output</subject><subject>Plasma heating</subject><subject>Plasma jets</subject><subject>Plasmas</subject><subject>Superconducting magnets</subject><subject>Tokamaks</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuC52wnmexucizVfkBBoRWPYT8S2No2a7IV6q83pcXTDMPzzgwPIY8MUsZAjdbvq5QDZylCnmcZXpEBU6iowiK7JgMAhRQlw1tyF8IGgIkM-IAsXsyP2bpuZ_Z94mxSJlzS2fx3lAH9-hwh0JDMjt713u2T1TH0ZpdY55PpIbRxMu66bVuXfezvyY0tt8E8XOqQfExf15M5Xb7NFpPxktZcsZ4WppRNXYOA2tpKQgWykLbCPD5qG56zBpQQUjRSgYGSi5rLyjaNlZUQwBCH5Pm8t_Pu-2BCrzfu4PfxpOYZ45xj1BEpOFO1dyF4Y3Xn213pj5qBPgnTUZg-CdMXYTHydI60xph_XKEsigLxD9mbZF8</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hu, Linlin</creator><creator>Ma, Guowu</creator><creator>Sun, Dimin</creator><creator>Huang, Qili</creator><creator>Zhuo, Tingting</creator><creator>Gong, Shenggang</creator><creator>Jiang, Yi</creator><creator>Zeng, Zaojin</creator><creator>Ma, Qiaosheng</creator><creator>Lei, Wenqiang</creator><creator>Song, Rui</creator><creator>Hu, Peng</creator><creator>Hu, Xinrui</creator><creator>Guo, Zixing</creator><creator>Ku, Xinyu</creator><creator>Tan, Zhiyuan</creator><creator>Chen, Hongbin</creator><creator>Meng, Fanbao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8449-309X</orcidid><orcidid>https://orcid.org/0000-0002-7564-5028</orcidid><orcidid>https://orcid.org/0000-0002-6586-6441</orcidid><orcidid>https://orcid.org/0000-0003-2115-6138</orcidid></search><sort><creationdate>20210401</creationdate><title>Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application</title><author>Hu, Linlin ; Ma, Guowu ; Sun, Dimin ; Huang, Qili ; Zhuo, Tingting ; Gong, Shenggang ; Jiang, Yi ; Zeng, Zaojin ; Ma, Qiaosheng ; Lei, Wenqiang ; Song, Rui ; Hu, Peng ; Hu, Xinrui ; Guo, Zixing ; Ku, Xinyu ; Tan, Zhiyuan ; Chen, Hongbin ; Meng, Fanbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceptance tests</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Converters</topic><topic>Cyclotrons</topic><topic>Electric power supplies</topic><topic>Electron cyclotron heating (ECH)</topic><topic>Energy conversion efficiency</topic><topic>EXL50</topic><topic>fusion</topic><topic>gyrotron</topic><topic>Gyrotrons</topic><topic>Heating systems</topic><topic>Loading</topic><topic>Manganese</topic><topic>Maximum power</topic><topic>Output</topic><topic>Plasma heating</topic><topic>Plasma jets</topic><topic>Plasmas</topic><topic>Superconducting magnets</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Linlin</creatorcontrib><creatorcontrib>Ma, Guowu</creatorcontrib><creatorcontrib>Sun, Dimin</creatorcontrib><creatorcontrib>Huang, Qili</creatorcontrib><creatorcontrib>Zhuo, Tingting</creatorcontrib><creatorcontrib>Gong, Shenggang</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Zeng, Zaojin</creatorcontrib><creatorcontrib>Ma, Qiaosheng</creatorcontrib><creatorcontrib>Lei, Wenqiang</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Hu, Xinrui</creatorcontrib><creatorcontrib>Guo, Zixing</creatorcontrib><creatorcontrib>Ku, Xinyu</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Hongbin</creatorcontrib><creatorcontrib>Meng, Fanbao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Linlin</au><au>Ma, Guowu</au><au>Sun, Dimin</au><au>Huang, Qili</au><au>Zhuo, Tingting</au><au>Gong, Shenggang</au><au>Jiang, Yi</au><au>Zeng, Zaojin</au><au>Ma, Qiaosheng</au><au>Lei, Wenqiang</au><au>Song, Rui</au><au>Hu, Peng</au><au>Hu, Xinrui</au><au>Guo, Zixing</au><au>Ku, Xinyu</au><au>Tan, Zhiyuan</au><au>Chen, Hongbin</au><au>Meng, Fanbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>49</volume><issue>4</issue><spage>1468</spage><epage>1474</epage><pages>1468-1474</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>A complete 28-GHz/50-kW gyrotron system was developed by the Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China, as a plasma heating source for the EXL50 fusion device, a compact spherical tokamak constructed by the ENN Group in 2019. The gyrotron employs a triode magnetron injection gun, a TE02-mode cylindrical cavity, a built-in quasi-optical mode converter, a single-stage depressed collector, and a single-disk boron nitride window. The gyrotron system features a match optical unit, a superconducting magnet, a calorimetric dummy load, a high-voltage power supply system, and other auxiliary components, was delivered to the EXL50 site. In the acceptance test, five successive shots of each power over 50 kW were generated for 30 s at 28 GHz. An average power of 51 kW, a maximum power of 55 kW, and 46% overall efficiency were obtained. The gyrotron system was assembled in the EXL50 and applied to a plasma discharge experiment. The gyrotron is the first practical domestic gyrotron produced for fusion applications in China. The design and test results of this instrument are presented in this article.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2021.3066553</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8449-309X</orcidid><orcidid>https://orcid.org/0000-0002-7564-5028</orcidid><orcidid>https://orcid.org/0000-0002-6586-6441</orcidid><orcidid>https://orcid.org/0000-0003-2115-6138</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2021-04, Vol.49 (4), p.1468-1474 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_9387773 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceptance tests Boron Boron nitride Converters Cyclotrons Electric power supplies Electron cyclotron heating (ECH) Energy conversion efficiency EXL50 fusion gyrotron Gyrotrons Heating systems Loading Manganese Maximum power Output Plasma heating Plasma jets Plasmas Superconducting magnets Tokamaks |
title | Development of a 28-GHz/50-kW/30-s Gyrotron System for Fusion Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%2028-GHz/50-kW/30-s%20Gyrotron%20System%20for%20Fusion%20Application&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Hu,%20Linlin&rft.date=2021-04-01&rft.volume=49&rft.issue=4&rft.spage=1468&rft.epage=1474&rft.pages=1468-1474&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2021.3066553&rft_dat=%3Cproquest_ieee_%3E2512223109%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-7ea8dcc040cffb80b0878fb36937fd261d094484d890e0a24c28bfddf8b440133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512223109&rft_id=info:pmid/&rft_ieee_id=9387773&rfr_iscdi=true |