Loading…

Quality-Blind Compressed Color Image Enhancement with Convolutional Neural Networks

Lossy compressed images and videos suffer from visible compression artifacts, especially when the bit-rate is low. To improve the quality of the compressed image while keeping the same bit-rate, decoder-side compression artifacts reduction (CAR) becomes important. Recently, convolutional neural netw...

Full description

Saved in:
Bibliographic Details
Main Authors: Cui, Kai, Koyuncu, Ahmet Burakhan, Boev, Atanas, Alshina, Elena, Steinbach, Eckehard
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Cui, Kai
Koyuncu, Ahmet Burakhan
Boev, Atanas
Alshina, Elena
Steinbach, Eckehard
description Lossy compressed images and videos suffer from visible compression artifacts, especially when the bit-rate is low. To improve the quality of the compressed image while keeping the same bit-rate, decoder-side compression artifacts reduction (CAR) becomes important. Recently, convolutional neural networks are adopted for CAR tasks and achieve the state-of-the-art performance. However, most CAR algorithms only focus on the reconstruction of the luminance channel. Also, a separate model usually needs to be trained for each quality factor (QF), which makes these approaches not practical in existing codecs. In this paper, we analyze a quality-blind training strategy and compare it with training separate models for each QF. The testing results with three representative CAR algorithms show the superiority of the quality-blind training compared to separate training. The results for pseudo and real quality-blind CAR tests further prove the generalizability of the quality-blind training for practical CAR tasks.
doi_str_mv 10.1109/ISCAS51556.2021.9401182
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9401182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9401182</ieee_id><sourcerecordid>9401182</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-8e07e023fef962bb5c4cc6cf9325d960466c9a4fd5438dff142890145879ebeb3</originalsourceid><addsrcrecordid>eNpNkMlOwzAURS0GiVL6BSzID6S892I79rJEDJUqECqsKyd5poYMVZJS9e-ZumB1rnSks7hCXCFMEcFez5fZbKlQKT0lIJxaCYiGjsSIUJkYFaljMbGpwZQMWgJMT_65M3He9-8ABKBpJJbPW1eFYR_fVKEpo6ytNx33Pf_Mqu2iee3eOLpt1q4puOZmiHZhWH_L5rOttkNoG1dFj7ztfjHs2u6jvxCn3lU9Tw4ci9e725fsIV483c-z2SIOBMkQG4aUgRLP3mrKc1XIotCFtwmp0mqQWhfWSV8qmZjSe5RkLKBUJrWcc56MxeVfNzDzatOF2nX71eGP5AtsJ1P2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Quality-Blind Compressed Color Image Enhancement with Convolutional Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Cui, Kai ; Koyuncu, Ahmet Burakhan ; Boev, Atanas ; Alshina, Elena ; Steinbach, Eckehard</creator><creatorcontrib>Cui, Kai ; Koyuncu, Ahmet Burakhan ; Boev, Atanas ; Alshina, Elena ; Steinbach, Eckehard</creatorcontrib><description>Lossy compressed images and videos suffer from visible compression artifacts, especially when the bit-rate is low. To improve the quality of the compressed image while keeping the same bit-rate, decoder-side compression artifacts reduction (CAR) becomes important. Recently, convolutional neural networks are adopted for CAR tasks and achieve the state-of-the-art performance. However, most CAR algorithms only focus on the reconstruction of the luminance channel. Also, a separate model usually needs to be trained for each quality factor (QF), which makes these approaches not practical in existing codecs. In this paper, we analyze a quality-blind training strategy and compare it with training separate models for each QF. The testing results with three representative CAR algorithms show the superiority of the quality-blind training compared to separate training. The results for pseudo and real quality-blind CAR tests further prove the generalizability of the quality-blind training for practical CAR tasks.</description><identifier>ISSN: 2158-1525</identifier><identifier>ISBN: 9781728192017</identifier><identifier>ISBN: 1728192013</identifier><identifier>EISSN: 2158-1525</identifier><identifier>DOI: 10.1109/ISCAS51556.2021.9401182</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Automobiles ; Codecs ; compression artifacts reduction ; Convolutional neural networks ; Image coding ; post-filtering ; quality-blind enhancement ; Task analysis ; Training</subject><ispartof>2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9401182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9401182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Kai</creatorcontrib><creatorcontrib>Koyuncu, Ahmet Burakhan</creatorcontrib><creatorcontrib>Boev, Atanas</creatorcontrib><creatorcontrib>Alshina, Elena</creatorcontrib><creatorcontrib>Steinbach, Eckehard</creatorcontrib><title>Quality-Blind Compressed Color Image Enhancement with Convolutional Neural Networks</title><title>2021 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS51556</addtitle><description>Lossy compressed images and videos suffer from visible compression artifacts, especially when the bit-rate is low. To improve the quality of the compressed image while keeping the same bit-rate, decoder-side compression artifacts reduction (CAR) becomes important. Recently, convolutional neural networks are adopted for CAR tasks and achieve the state-of-the-art performance. However, most CAR algorithms only focus on the reconstruction of the luminance channel. Also, a separate model usually needs to be trained for each quality factor (QF), which makes these approaches not practical in existing codecs. In this paper, we analyze a quality-blind training strategy and compare it with training separate models for each QF. The testing results with three representative CAR algorithms show the superiority of the quality-blind training compared to separate training. The results for pseudo and real quality-blind CAR tests further prove the generalizability of the quality-blind training for practical CAR tasks.</description><subject>Analytical models</subject><subject>Automobiles</subject><subject>Codecs</subject><subject>compression artifacts reduction</subject><subject>Convolutional neural networks</subject><subject>Image coding</subject><subject>post-filtering</subject><subject>quality-blind enhancement</subject><subject>Task analysis</subject><subject>Training</subject><issn>2158-1525</issn><issn>2158-1525</issn><isbn>9781728192017</isbn><isbn>1728192013</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkMlOwzAURS0GiVL6BSzID6S892I79rJEDJUqECqsKyd5poYMVZJS9e-ZumB1rnSks7hCXCFMEcFez5fZbKlQKT0lIJxaCYiGjsSIUJkYFaljMbGpwZQMWgJMT_65M3He9-8ABKBpJJbPW1eFYR_fVKEpo6ytNx33Pf_Mqu2iee3eOLpt1q4puOZmiHZhWH_L5rOttkNoG1dFj7ztfjHs2u6jvxCn3lU9Tw4ci9e725fsIV483c-z2SIOBMkQG4aUgRLP3mrKc1XIotCFtwmp0mqQWhfWSV8qmZjSe5RkLKBUJrWcc56MxeVfNzDzatOF2nX71eGP5AtsJ1P2</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Cui, Kai</creator><creator>Koyuncu, Ahmet Burakhan</creator><creator>Boev, Atanas</creator><creator>Alshina, Elena</creator><creator>Steinbach, Eckehard</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202105</creationdate><title>Quality-Blind Compressed Color Image Enhancement with Convolutional Neural Networks</title><author>Cui, Kai ; Koyuncu, Ahmet Burakhan ; Boev, Atanas ; Alshina, Elena ; Steinbach, Eckehard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-8e07e023fef962bb5c4cc6cf9325d960466c9a4fd5438dff142890145879ebeb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Automobiles</topic><topic>Codecs</topic><topic>compression artifacts reduction</topic><topic>Convolutional neural networks</topic><topic>Image coding</topic><topic>post-filtering</topic><topic>quality-blind enhancement</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Cui, Kai</creatorcontrib><creatorcontrib>Koyuncu, Ahmet Burakhan</creatorcontrib><creatorcontrib>Boev, Atanas</creatorcontrib><creatorcontrib>Alshina, Elena</creatorcontrib><creatorcontrib>Steinbach, Eckehard</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Kai</au><au>Koyuncu, Ahmet Burakhan</au><au>Boev, Atanas</au><au>Alshina, Elena</au><au>Steinbach, Eckehard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quality-Blind Compressed Color Image Enhancement with Convolutional Neural Networks</atitle><btitle>2021 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS51556</stitle><date>2021-05</date><risdate>2021</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2158-1525</issn><eissn>2158-1525</eissn><isbn>9781728192017</isbn><isbn>1728192013</isbn><abstract>Lossy compressed images and videos suffer from visible compression artifacts, especially when the bit-rate is low. To improve the quality of the compressed image while keeping the same bit-rate, decoder-side compression artifacts reduction (CAR) becomes important. Recently, convolutional neural networks are adopted for CAR tasks and achieve the state-of-the-art performance. However, most CAR algorithms only focus on the reconstruction of the luminance channel. Also, a separate model usually needs to be trained for each quality factor (QF), which makes these approaches not practical in existing codecs. In this paper, we analyze a quality-blind training strategy and compare it with training separate models for each QF. The testing results with three representative CAR algorithms show the superiority of the quality-blind training compared to separate training. The results for pseudo and real quality-blind CAR tests further prove the generalizability of the quality-blind training for practical CAR tasks.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS51556.2021.9401182</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-1525
ispartof 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, p.1-5
issn 2158-1525
2158-1525
language eng
recordid cdi_ieee_primary_9401182
source IEEE Xplore All Conference Series
subjects Analytical models
Automobiles
Codecs
compression artifacts reduction
Convolutional neural networks
Image coding
post-filtering
quality-blind enhancement
Task analysis
Training
title Quality-Blind Compressed Color Image Enhancement with Convolutional Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quality-Blind%20Compressed%20Color%20Image%20Enhancement%20with%20Convolutional%20Neural%20Networks&rft.btitle=2021%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Cui,%20Kai&rft.date=2021-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2158-1525&rft.eissn=2158-1525&rft.isbn=9781728192017&rft.isbn_list=1728192013&rft_id=info:doi/10.1109/ISCAS51556.2021.9401182&rft_dat=%3Cieee_CHZPO%3E9401182%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-8e07e023fef962bb5c4cc6cf9325d960466c9a4fd5438dff142890145879ebeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9401182&rfr_iscdi=true