Loading…

Accurate Monte Carlo Modeling of Small-Animal Multi-Pinhole SPECT for Non-Standard Multi-Isotope Applications

Recent advances in preclinical SPECT instrumentation enable non-standard multi-isotope acquisitions at the edge of physical feasibility to improve efficiency of pharmaceutical research. Due to the variety of applications, optimization of imaging hardware, acquisition protocols and reconstruction alg...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2021-09, Vol.40 (9), p.2208-2220
Main Authors: Lukas, Mathias, Kluge, Anne, Beindorff, Nicola, Brenner, Winfried
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advances in preclinical SPECT instrumentation enable non-standard multi-isotope acquisitions at the edge of physical feasibility to improve efficiency of pharmaceutical research. Due to the variety of applications, optimization of imaging hardware, acquisition protocols and reconstruction algorithms is a central and recurring task. For this purpose, we developed a Monte Carlo simulation model of a preclinical state-of-the-art multi-pinhole SPECT system, the NanoSPECT/CT PLUS , with emphasis on high accuracy for multi-isotope experiments operating near the system range limits. The GATE/ GEANT4 model included an accurate description of multi-pinhole collimators and all substructures of the detector back compartment. The readout electronics was modeled with a variety of signal processors partially extended to incorporate non-simplified measured response functions. The final model was able to predict energy spectra, planar images and tomographic reconstructions with high accuracy for both standard and non-standard multi-isotope experiments. Complex activity distributions could be reproduced for a wide range of noise levels and different modes of angular undersampling. Using the example of a dual-isotope triple-tracer experiment, the model has proven to be a powerful tool for protocol optimization and quantitative image correction at the performance range limits of multi-isotope multi-pinhole SPECT.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2021.3073749