Loading…

An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs

PageRank algorithm is a benchmark for many graph analytics and is the underlying kernel for link predictions, recommendation systems. It is an iterative algorithm that updates ranks of pages until the value converges. Implementation of PageRank algorithm on a shared memory architecture while taking...

Full description

Saved in:
Bibliographic Details
Main Authors: Eedi, Hemalatha, Peri, Sathya, Ranabothu, Neha, Utkoor, Rahul
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 43
container_issue
container_start_page 35
container_title
container_volume
creator Eedi, Hemalatha
Peri, Sathya
Ranabothu, Neha
Utkoor, Rahul
description PageRank algorithm is a benchmark for many graph analytics and is the underlying kernel for link predictions, recommendation systems. It is an iterative algorithm that updates ranks of pages until the value converges. Implementation of PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism using large-scale graphs is a challenging task. In this paper, We present parallel algorithms for computing the PageRank suitable to the shared memory systems. Initially, we present parallel implementations of page-rank algorithms using barrier and lock variants. Later, we propose new approaches which are lock-free and are barrier-less synchronization to overcome the issues of lock based methods. A detailed experimental analysis of our approach is carried out using real-world web graphs from SNAP and Synthetic Graphs from RMAT on an Intel(R) Xeon E5-2660 v4 processor architecture with 56 threads using the POSIX thread library.
doi_str_mv 10.1109/PDP52278.2021.00015
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9407114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9407114</ieee_id><sourcerecordid>9407114</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-7ba185103275f216cb7c65d6c0f467a6ee603472a4da8e0a823239e06bf198e33</originalsourceid><addsrcrecordid>eNotzMtOwkAUgOHRxEREnoDNvEDrOXNtlxURTVAbL2tyGGbKSGnJtBvfXhJd_ZsvP2NzhBwRyrv6odZC2CIXIDAHANQXbFbaAo3RCpXW-pJNhLQ201bDNbsZhu8zs0qUE_ZSdXwZQnTRdyOvE7kxOmr5a99l923vDrFreE2Nf6fuwKu26VMc90ce-sTXlBrPP87c81Wi0364ZVeB2sHP_jtlX4_Lz8VTtn5bPS-qdRYFyDGzW8JCI0hhdRBo3NY6o3fGQVDGkvHegFRWkNpR4YEKIYUsPZhtwLLwUk7Z_O8bvfebU4pHSj-bUoFFVPIXxuRMzQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs</title><source>IEEE Xplore All Conference Series</source><creator>Eedi, Hemalatha ; Peri, Sathya ; Ranabothu, Neha ; Utkoor, Rahul</creator><creatorcontrib>Eedi, Hemalatha ; Peri, Sathya ; Ranabothu, Neha ; Utkoor, Rahul</creatorcontrib><description>PageRank algorithm is a benchmark for many graph analytics and is the underlying kernel for link predictions, recommendation systems. It is an iterative algorithm that updates ranks of pages until the value converges. Implementation of PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism using large-scale graphs is a challenging task. In this paper, We present parallel algorithms for computing the PageRank suitable to the shared memory systems. Initially, we present parallel implementations of page-rank algorithms using barrier and lock variants. Later, we propose new approaches which are lock-free and are barrier-less synchronization to overcome the issues of lock based methods. A detailed experimental analysis of our approach is carried out using real-world web graphs from SNAP and Synthetic Graphs from RMAT on an Intel(R) Xeon E5-2660 v4 processor architecture with 56 threads using the POSIX thread library.</description><identifier>EISSN: 2377-5750</identifier><identifier>EISBN: 9781665414555</identifier><identifier>EISBN: 1665414553</identifier><identifier>DOI: 10.1109/PDP52278.2021.00015</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fine-Grained Parallelism ; Instruction sets ; Libraries ; Memory architecture ; Memory management ; No Synchronization and Wait-Free ; PageRank Algorithm ; Prediction algorithms ; Service-oriented architecture ; Shared Memory Architecture ; Synchronization</subject><ispartof>2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2021, p.35-43</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9407114$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9407114$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eedi, Hemalatha</creatorcontrib><creatorcontrib>Peri, Sathya</creatorcontrib><creatorcontrib>Ranabothu, Neha</creatorcontrib><creatorcontrib>Utkoor, Rahul</creatorcontrib><title>An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs</title><title>2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</title><addtitle>PDP</addtitle><description>PageRank algorithm is a benchmark for many graph analytics and is the underlying kernel for link predictions, recommendation systems. It is an iterative algorithm that updates ranks of pages until the value converges. Implementation of PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism using large-scale graphs is a challenging task. In this paper, We present parallel algorithms for computing the PageRank suitable to the shared memory systems. Initially, we present parallel implementations of page-rank algorithms using barrier and lock variants. Later, we propose new approaches which are lock-free and are barrier-less synchronization to overcome the issues of lock based methods. A detailed experimental analysis of our approach is carried out using real-world web graphs from SNAP and Synthetic Graphs from RMAT on an Intel(R) Xeon E5-2660 v4 processor architecture with 56 threads using the POSIX thread library.</description><subject>Fine-Grained Parallelism</subject><subject>Instruction sets</subject><subject>Libraries</subject><subject>Memory architecture</subject><subject>Memory management</subject><subject>No Synchronization and Wait-Free</subject><subject>PageRank Algorithm</subject><subject>Prediction algorithms</subject><subject>Service-oriented architecture</subject><subject>Shared Memory Architecture</subject><subject>Synchronization</subject><issn>2377-5750</issn><isbn>9781665414555</isbn><isbn>1665414553</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzMtOwkAUgOHRxEREnoDNvEDrOXNtlxURTVAbL2tyGGbKSGnJtBvfXhJd_ZsvP2NzhBwRyrv6odZC2CIXIDAHANQXbFbaAo3RCpXW-pJNhLQ201bDNbsZhu8zs0qUE_ZSdXwZQnTRdyOvE7kxOmr5a99l923vDrFreE2Nf6fuwKu26VMc90ce-sTXlBrPP87c81Wi0364ZVeB2sHP_jtlX4_Lz8VTtn5bPS-qdRYFyDGzW8JCI0hhdRBo3NY6o3fGQVDGkvHegFRWkNpR4YEKIYUsPZhtwLLwUk7Z_O8bvfebU4pHSj-bUoFFVPIXxuRMzQ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Eedi, Hemalatha</creator><creator>Peri, Sathya</creator><creator>Ranabothu, Neha</creator><creator>Utkoor, Rahul</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202103</creationdate><title>An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs</title><author>Eedi, Hemalatha ; Peri, Sathya ; Ranabothu, Neha ; Utkoor, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-7ba185103275f216cb7c65d6c0f467a6ee603472a4da8e0a823239e06bf198e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fine-Grained Parallelism</topic><topic>Instruction sets</topic><topic>Libraries</topic><topic>Memory architecture</topic><topic>Memory management</topic><topic>No Synchronization and Wait-Free</topic><topic>PageRank Algorithm</topic><topic>Prediction algorithms</topic><topic>Service-oriented architecture</topic><topic>Shared Memory Architecture</topic><topic>Synchronization</topic><toplevel>online_resources</toplevel><creatorcontrib>Eedi, Hemalatha</creatorcontrib><creatorcontrib>Peri, Sathya</creatorcontrib><creatorcontrib>Ranabothu, Neha</creatorcontrib><creatorcontrib>Utkoor, Rahul</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eedi, Hemalatha</au><au>Peri, Sathya</au><au>Ranabothu, Neha</au><au>Utkoor, Rahul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs</atitle><btitle>2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</btitle><stitle>PDP</stitle><date>2021-03</date><risdate>2021</risdate><spage>35</spage><epage>43</epage><pages>35-43</pages><eissn>2377-5750</eissn><eisbn>9781665414555</eisbn><eisbn>1665414553</eisbn><coden>IEEPAD</coden><abstract>PageRank algorithm is a benchmark for many graph analytics and is the underlying kernel for link predictions, recommendation systems. It is an iterative algorithm that updates ranks of pages until the value converges. Implementation of PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism using large-scale graphs is a challenging task. In this paper, We present parallel algorithms for computing the PageRank suitable to the shared memory systems. Initially, we present parallel implementations of page-rank algorithms using barrier and lock variants. Later, we propose new approaches which are lock-free and are barrier-less synchronization to overcome the issues of lock based methods. A detailed experimental analysis of our approach is carried out using real-world web graphs from SNAP and Synthetic Graphs from RMAT on an Intel(R) Xeon E5-2660 v4 processor architecture with 56 threads using the POSIX thread library.</abstract><pub>IEEE</pub><doi>10.1109/PDP52278.2021.00015</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2377-5750
ispartof 2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2021, p.35-43
issn 2377-5750
language eng
recordid cdi_ieee_primary_9407114
source IEEE Xplore All Conference Series
subjects Fine-Grained Parallelism
Instruction sets
Libraries
Memory architecture
Memory management
No Synchronization and Wait-Free
PageRank Algorithm
Prediction algorithms
Service-oriented architecture
Shared Memory Architecture
Synchronization
title An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Efficient%20Practical%20Non-Blocking%20PageRank%20Algorithm%20for%20Large%20Scale%20Graphs&rft.btitle=2021%2029th%20Euromicro%20International%20Conference%20on%20Parallel,%20Distributed%20and%20Network-Based%20Processing%20(PDP)&rft.au=Eedi,%20Hemalatha&rft.date=2021-03&rft.spage=35&rft.epage=43&rft.pages=35-43&rft.eissn=2377-5750&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PDP52278.2021.00015&rft.eisbn=9781665414555&rft.eisbn_list=1665414553&rft_dat=%3Cieee_CHZPO%3E9407114%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-7ba185103275f216cb7c65d6c0f467a6ee603472a4da8e0a823239e06bf198e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9407114&rfr_iscdi=true