Loading…
Nonstationary Portfolios: Diversification in the Spectral Domain
Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5159 |
container_issue | |
container_start_page | 5155 |
container_title | |
container_volume | |
creator | Scalzo, Bruno Arroyo, Alvaro Stankovic, Ljubisa Mandic, Danilo P. |
description | Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant information loss if the market observables are non-stationary. To this end, we reformulate the portfolio optimization problem in the spectral domain to cater for the nonstationarity inherent to asset price movements and, in this way, allow for optimal capital allocations to be time-varying. Unlike existing spectral portfolio techniques, the proposed framework employs augmented complex statistics in order to exploit the interactions between the real and imaginary parts of the complex spectral variables, which in turn allows for the modelling of both harmonics and cyclostationarity in the time domain. The advantages of the proposed framework over traditional methods are demonstrated through numerical simulations using real-world price data. |
doi_str_mv | 10.1109/ICASSP39728.2021.9413769 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9413769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9413769</ieee_id><sourcerecordid>9413769</sourcerecordid><originalsourceid>FETCH-LOGICAL-i253t-223b61f5e6a66660569178a1f49eb6032152e59850af98d74a002b93bb98524e3</originalsourceid><addsrcrecordid>eNotj91KAzEUhKMgWGufwJu8wK7nJJuf45XSWhWKFlbBu5KtCUbaTdkEwbd30c7NwAwM3zDGEWpEoOun-V3briUZYWsBAmtqUBpNJ2xGxuIYo9Gg1CmbCGmoQoL3c3aR8xcAWNPYCbt9Tn0ursTUu-GHr9NQQtrFlG_4In77IccQt381jz0vn563B78tg9vxRdq72F-ys-B22c-OPmVvy_vX-WO1enkY-VZVFEqWSgjZaQzKa6dHgdKExjoMDflOgxSohFdkFbhA9sM0DkB0JLtuzETj5ZRd_e9G7_3mMMT9yLs5Hpa_0wxKiw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonstationary Portfolios: Diversification in the Spectral Domain</title><source>IEEE Xplore All Conference Series</source><creator>Scalzo, Bruno ; Arroyo, Alvaro ; Stankovic, Ljubisa ; Mandic, Danilo P.</creator><creatorcontrib>Scalzo, Bruno ; Arroyo, Alvaro ; Stankovic, Ljubisa ; Mandic, Danilo P.</creatorcontrib><description>Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant information loss if the market observables are non-stationary. To this end, we reformulate the portfolio optimization problem in the spectral domain to cater for the nonstationarity inherent to asset price movements and, in this way, allow for optimal capital allocations to be time-varying. Unlike existing spectral portfolio techniques, the proposed framework employs augmented complex statistics in order to exploit the interactions between the real and imaginary parts of the complex spectral variables, which in turn allows for the modelling of both harmonics and cyclostationarity in the time domain. The advantages of the proposed framework over traditional methods are demonstrated through numerical simulations using real-world price data.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781728176055</identifier><identifier>EISBN: 1728176050</identifier><identifier>DOI: 10.1109/ICASSP39728.2021.9413769</identifier><language>eng</language><publisher>IEEE</publisher><subject>augmented complex statistics ; Financial signal processing ; Harmonic analysis ; nonstationary ; Numerical simulation ; Optimization methods ; portfolio optimization ; Resource management ; Signal processing ; spectral analysis ; Speech processing ; Time-domain analysis</subject><ispartof>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, p.5155-5159</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9413769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9413769$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scalzo, Bruno</creatorcontrib><creatorcontrib>Arroyo, Alvaro</creatorcontrib><creatorcontrib>Stankovic, Ljubisa</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><title>Nonstationary Portfolios: Diversification in the Spectral Domain</title><title>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant information loss if the market observables are non-stationary. To this end, we reformulate the portfolio optimization problem in the spectral domain to cater for the nonstationarity inherent to asset price movements and, in this way, allow for optimal capital allocations to be time-varying. Unlike existing spectral portfolio techniques, the proposed framework employs augmented complex statistics in order to exploit the interactions between the real and imaginary parts of the complex spectral variables, which in turn allows for the modelling of both harmonics and cyclostationarity in the time domain. The advantages of the proposed framework over traditional methods are demonstrated through numerical simulations using real-world price data.</description><subject>augmented complex statistics</subject><subject>Financial signal processing</subject><subject>Harmonic analysis</subject><subject>nonstationary</subject><subject>Numerical simulation</subject><subject>Optimization methods</subject><subject>portfolio optimization</subject><subject>Resource management</subject><subject>Signal processing</subject><subject>spectral analysis</subject><subject>Speech processing</subject><subject>Time-domain analysis</subject><issn>2379-190X</issn><isbn>9781728176055</isbn><isbn>1728176050</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KAzEUhKMgWGufwJu8wK7nJJuf45XSWhWKFlbBu5KtCUbaTdkEwbd30c7NwAwM3zDGEWpEoOun-V3briUZYWsBAmtqUBpNJ2xGxuIYo9Gg1CmbCGmoQoL3c3aR8xcAWNPYCbt9Tn0ursTUu-GHr9NQQtrFlG_4In77IccQt381jz0vn563B78tg9vxRdq72F-ys-B22c-OPmVvy_vX-WO1enkY-VZVFEqWSgjZaQzKa6dHgdKExjoMDflOgxSohFdkFbhA9sM0DkB0JLtuzETj5ZRd_e9G7_3mMMT9yLs5Hpa_0wxKiw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Scalzo, Bruno</creator><creator>Arroyo, Alvaro</creator><creator>Stankovic, Ljubisa</creator><creator>Mandic, Danilo P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210101</creationdate><title>Nonstationary Portfolios: Diversification in the Spectral Domain</title><author>Scalzo, Bruno ; Arroyo, Alvaro ; Stankovic, Ljubisa ; Mandic, Danilo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i253t-223b61f5e6a66660569178a1f49eb6032152e59850af98d74a002b93bb98524e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>augmented complex statistics</topic><topic>Financial signal processing</topic><topic>Harmonic analysis</topic><topic>nonstationary</topic><topic>Numerical simulation</topic><topic>Optimization methods</topic><topic>portfolio optimization</topic><topic>Resource management</topic><topic>Signal processing</topic><topic>spectral analysis</topic><topic>Speech processing</topic><topic>Time-domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Scalzo, Bruno</creatorcontrib><creatorcontrib>Arroyo, Alvaro</creatorcontrib><creatorcontrib>Stankovic, Ljubisa</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scalzo, Bruno</au><au>Arroyo, Alvaro</au><au>Stankovic, Ljubisa</au><au>Mandic, Danilo P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonstationary Portfolios: Diversification in the Spectral Domain</atitle><btitle>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2021-01-01</date><risdate>2021</risdate><spage>5155</spage><epage>5159</epage><pages>5155-5159</pages><eissn>2379-190X</eissn><eisbn>9781728176055</eisbn><eisbn>1728176050</eisbn><abstract>Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant information loss if the market observables are non-stationary. To this end, we reformulate the portfolio optimization problem in the spectral domain to cater for the nonstationarity inherent to asset price movements and, in this way, allow for optimal capital allocations to be time-varying. Unlike existing spectral portfolio techniques, the proposed framework employs augmented complex statistics in order to exploit the interactions between the real and imaginary parts of the complex spectral variables, which in turn allows for the modelling of both harmonics and cyclostationarity in the time domain. The advantages of the proposed framework over traditional methods are demonstrated through numerical simulations using real-world price data.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP39728.2021.9413769</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, p.5155-5159 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_9413769 |
source | IEEE Xplore All Conference Series |
subjects | augmented complex statistics Financial signal processing Harmonic analysis nonstationary Numerical simulation Optimization methods portfolio optimization Resource management Signal processing spectral analysis Speech processing Time-domain analysis |
title | Nonstationary Portfolios: Diversification in the Spectral Domain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonstationary%20Portfolios:%20Diversification%20in%20the%20Spectral%20Domain&rft.btitle=ICASSP%202021%20-%202021%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Scalzo,%20Bruno&rft.date=2021-01-01&rft.spage=5155&rft.epage=5159&rft.pages=5155-5159&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP39728.2021.9413769&rft.eisbn=9781728176055&rft.eisbn_list=1728176050&rft_dat=%3Cieee_CHZPO%3E9413769%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i253t-223b61f5e6a66660569178a1f49eb6032152e59850af98d74a002b93bb98524e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9413769&rfr_iscdi=true |