Loading…

Nonstationary Portfolios: Diversification in the Spectral Domain

Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant...

Full description

Saved in:
Bibliographic Details
Main Authors: Scalzo, Bruno, Arroyo, Alvaro, Stankovic, Ljubisa, Mandic, Danilo P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5159
container_issue
container_start_page 5155
container_title
container_volume
creator Scalzo, Bruno
Arroyo, Alvaro
Stankovic, Ljubisa
Mandic, Danilo P.
description Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant information loss if the market observables are non-stationary. To this end, we reformulate the portfolio optimization problem in the spectral domain to cater for the nonstationarity inherent to asset price movements and, in this way, allow for optimal capital allocations to be time-varying. Unlike existing spectral portfolio techniques, the proposed framework employs augmented complex statistics in order to exploit the interactions between the real and imaginary parts of the complex spectral variables, which in turn allows for the modelling of both harmonics and cyclostationarity in the time domain. The advantages of the proposed framework over traditional methods are demonstrated through numerical simulations using real-world price data.
doi_str_mv 10.1109/ICASSP39728.2021.9413769
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9413769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9413769</ieee_id><sourcerecordid>9413769</sourcerecordid><originalsourceid>FETCH-LOGICAL-i253t-223b61f5e6a66660569178a1f49eb6032152e59850af98d74a002b93bb98524e3</originalsourceid><addsrcrecordid>eNotj91KAzEUhKMgWGufwJu8wK7nJJuf45XSWhWKFlbBu5KtCUbaTdkEwbd30c7NwAwM3zDGEWpEoOun-V3briUZYWsBAmtqUBpNJ2xGxuIYo9Gg1CmbCGmoQoL3c3aR8xcAWNPYCbt9Tn0ursTUu-GHr9NQQtrFlG_4In77IccQt381jz0vn563B78tg9vxRdq72F-ys-B22c-OPmVvy_vX-WO1enkY-VZVFEqWSgjZaQzKa6dHgdKExjoMDflOgxSohFdkFbhA9sM0DkB0JLtuzETj5ZRd_e9G7_3mMMT9yLs5Hpa_0wxKiw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonstationary Portfolios: Diversification in the Spectral Domain</title><source>IEEE Xplore All Conference Series</source><creator>Scalzo, Bruno ; Arroyo, Alvaro ; Stankovic, Ljubisa ; Mandic, Danilo P.</creator><creatorcontrib>Scalzo, Bruno ; Arroyo, Alvaro ; Stankovic, Ljubisa ; Mandic, Danilo P.</creatorcontrib><description>Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant information loss if the market observables are non-stationary. To this end, we reformulate the portfolio optimization problem in the spectral domain to cater for the nonstationarity inherent to asset price movements and, in this way, allow for optimal capital allocations to be time-varying. Unlike existing spectral portfolio techniques, the proposed framework employs augmented complex statistics in order to exploit the interactions between the real and imaginary parts of the complex spectral variables, which in turn allows for the modelling of both harmonics and cyclostationarity in the time domain. The advantages of the proposed framework over traditional methods are demonstrated through numerical simulations using real-world price data.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781728176055</identifier><identifier>EISBN: 1728176050</identifier><identifier>DOI: 10.1109/ICASSP39728.2021.9413769</identifier><language>eng</language><publisher>IEEE</publisher><subject>augmented complex statistics ; Financial signal processing ; Harmonic analysis ; nonstationary ; Numerical simulation ; Optimization methods ; portfolio optimization ; Resource management ; Signal processing ; spectral analysis ; Speech processing ; Time-domain analysis</subject><ispartof>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, p.5155-5159</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9413769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9413769$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scalzo, Bruno</creatorcontrib><creatorcontrib>Arroyo, Alvaro</creatorcontrib><creatorcontrib>Stankovic, Ljubisa</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><title>Nonstationary Portfolios: Diversification in the Spectral Domain</title><title>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant information loss if the market observables are non-stationary. To this end, we reformulate the portfolio optimization problem in the spectral domain to cater for the nonstationarity inherent to asset price movements and, in this way, allow for optimal capital allocations to be time-varying. Unlike existing spectral portfolio techniques, the proposed framework employs augmented complex statistics in order to exploit the interactions between the real and imaginary parts of the complex spectral variables, which in turn allows for the modelling of both harmonics and cyclostationarity in the time domain. The advantages of the proposed framework over traditional methods are demonstrated through numerical simulations using real-world price data.</description><subject>augmented complex statistics</subject><subject>Financial signal processing</subject><subject>Harmonic analysis</subject><subject>nonstationary</subject><subject>Numerical simulation</subject><subject>Optimization methods</subject><subject>portfolio optimization</subject><subject>Resource management</subject><subject>Signal processing</subject><subject>spectral analysis</subject><subject>Speech processing</subject><subject>Time-domain analysis</subject><issn>2379-190X</issn><isbn>9781728176055</isbn><isbn>1728176050</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KAzEUhKMgWGufwJu8wK7nJJuf45XSWhWKFlbBu5KtCUbaTdkEwbd30c7NwAwM3zDGEWpEoOun-V3briUZYWsBAmtqUBpNJ2xGxuIYo9Gg1CmbCGmoQoL3c3aR8xcAWNPYCbt9Tn0ursTUu-GHr9NQQtrFlG_4In77IccQt381jz0vn563B78tg9vxRdq72F-ys-B22c-OPmVvy_vX-WO1enkY-VZVFEqWSgjZaQzKa6dHgdKExjoMDflOgxSohFdkFbhA9sM0DkB0JLtuzETj5ZRd_e9G7_3mMMT9yLs5Hpa_0wxKiw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Scalzo, Bruno</creator><creator>Arroyo, Alvaro</creator><creator>Stankovic, Ljubisa</creator><creator>Mandic, Danilo P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210101</creationdate><title>Nonstationary Portfolios: Diversification in the Spectral Domain</title><author>Scalzo, Bruno ; Arroyo, Alvaro ; Stankovic, Ljubisa ; Mandic, Danilo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i253t-223b61f5e6a66660569178a1f49eb6032152e59850af98d74a002b93bb98524e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>augmented complex statistics</topic><topic>Financial signal processing</topic><topic>Harmonic analysis</topic><topic>nonstationary</topic><topic>Numerical simulation</topic><topic>Optimization methods</topic><topic>portfolio optimization</topic><topic>Resource management</topic><topic>Signal processing</topic><topic>spectral analysis</topic><topic>Speech processing</topic><topic>Time-domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Scalzo, Bruno</creatorcontrib><creatorcontrib>Arroyo, Alvaro</creatorcontrib><creatorcontrib>Stankovic, Ljubisa</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scalzo, Bruno</au><au>Arroyo, Alvaro</au><au>Stankovic, Ljubisa</au><au>Mandic, Danilo P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonstationary Portfolios: Diversification in the Spectral Domain</atitle><btitle>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2021-01-01</date><risdate>2021</risdate><spage>5155</spage><epage>5159</epage><pages>5155-5159</pages><eissn>2379-190X</eissn><eisbn>9781728176055</eisbn><eisbn>1728176050</eisbn><abstract>Classical portfolio optimization methods typically determine an optimal capital allocation through the implicit, yet critical, assumption of statistical time-invariance. Such models are inadequate for real-world markets as they employ standard time-averaging based estimators which suffer significant information loss if the market observables are non-stationary. To this end, we reformulate the portfolio optimization problem in the spectral domain to cater for the nonstationarity inherent to asset price movements and, in this way, allow for optimal capital allocations to be time-varying. Unlike existing spectral portfolio techniques, the proposed framework employs augmented complex statistics in order to exploit the interactions between the real and imaginary parts of the complex spectral variables, which in turn allows for the modelling of both harmonics and cyclostationarity in the time domain. The advantages of the proposed framework over traditional methods are demonstrated through numerical simulations using real-world price data.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP39728.2021.9413769</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, p.5155-5159
issn 2379-190X
language eng
recordid cdi_ieee_primary_9413769
source IEEE Xplore All Conference Series
subjects augmented complex statistics
Financial signal processing
Harmonic analysis
nonstationary
Numerical simulation
Optimization methods
portfolio optimization
Resource management
Signal processing
spectral analysis
Speech processing
Time-domain analysis
title Nonstationary Portfolios: Diversification in the Spectral Domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonstationary%20Portfolios:%20Diversification%20in%20the%20Spectral%20Domain&rft.btitle=ICASSP%202021%20-%202021%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Scalzo,%20Bruno&rft.date=2021-01-01&rft.spage=5155&rft.epage=5159&rft.pages=5155-5159&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP39728.2021.9413769&rft.eisbn=9781728176055&rft.eisbn_list=1728176050&rft_dat=%3Cieee_CHZPO%3E9413769%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i253t-223b61f5e6a66660569178a1f49eb6032152e59850af98d74a002b93bb98524e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9413769&rfr_iscdi=true