Loading…
CNR-IEMN: A Deep Learning Based Approach to Recognise Covid-19 from CT-Scan
The recognition of Covid-19 infection and distinguishing it from other Lung diseases from CT-scan is an emerging field in machine learning and computer vision community. In this paper, we proposed deep learning based approach to recognize the Covid-19 infection from the CT-scans. Our approach consis...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c342t-b6d1de48258beb2fe8a71a5349b6a737e21f6c69730bb7d31f6c1334c8cfe3823 |
---|---|
cites | |
container_end_page | 8572 |
container_issue | |
container_start_page | 8568 |
container_title | |
container_volume | |
creator | Bougourzi, Fares Contino, Riccardo Distante, Cosimo Taleb-Ahmed, Abdelmalik |
description | The recognition of Covid-19 infection and distinguishing it from other Lung diseases from CT-scan is an emerging field in machine learning and computer vision community. In this paper, we proposed deep learning based approach to recognize the Covid-19 infection from the CT-scans. Our approach consists of two main stages. In the first stage, we trained deep learning architectures with Multi-task strategy for Slice-Level classification. In the second stage, we used the previous trained models with XG-boost classifier to classify the whole CT-scan into Normal, Covid-19 or Cap class. The evaluation of our approach achieved promising results on the validation data of SPGC-COVID dataset. In more details, our approach achieved 87.75% as overall accuracy and 96.36%, 52.63% and 95.83% sensitivities for Covid-19, Cap and Normal, respectively. From other hand, our approach achieved the fifth place on the three test datasets of SPGC on COVID-19 challenge where our approach achieved the best result for Covid-19 sensitivity. |
doi_str_mv | 10.1109/ICASSP39728.2021.9414185 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9414185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9414185</ieee_id><sourcerecordid>9414185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-b6d1de48258beb2fe8a71a5349b6a737e21f6c69730bb7d31f6c1334c8cfe3823</originalsourceid><addsrcrecordid>eNotj8FOwzAQRA0SEqX0C7j4Bxy8Xie2uZVQoCIU1BSJW-U4mxJEkyipkPh7guhp9ObwNMMYBxkBSHe9TOd5_orOKBspqSByGjTY-ITNnLEw1mASGcenbKLQOAFOvp-zi2H4lFJao-2EPaWrtVgunlc3fM7viDqeke-butnxWz9Qyedd17c-fPBDy9cU2l1TD8TT9rsuRx-v-nbP043Ig28u2VnlvwaaHXPK3u4Xm_RRZC8P49RMBNTqIIqkhJK0VbEtqFAVWW_Ax6hdkXiDhhRUSUicQVkUpsQ_AkQdbKgIrcIpu_r31kS07fp67_uf7fE7_gJyuUxC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CNR-IEMN: A Deep Learning Based Approach to Recognise Covid-19 from CT-Scan</title><source>IEEE Xplore All Conference Series</source><creator>Bougourzi, Fares ; Contino, Riccardo ; Distante, Cosimo ; Taleb-Ahmed, Abdelmalik</creator><creatorcontrib>Bougourzi, Fares ; Contino, Riccardo ; Distante, Cosimo ; Taleb-Ahmed, Abdelmalik</creatorcontrib><description>The recognition of Covid-19 infection and distinguishing it from other Lung diseases from CT-scan is an emerging field in machine learning and computer vision community. In this paper, we proposed deep learning based approach to recognize the Covid-19 infection from the CT-scans. Our approach consists of two main stages. In the first stage, we trained deep learning architectures with Multi-task strategy for Slice-Level classification. In the second stage, we used the previous trained models with XG-boost classifier to classify the whole CT-scan into Normal, Covid-19 or Cap class. The evaluation of our approach achieved promising results on the validation data of SPGC-COVID dataset. In more details, our approach achieved 87.75% as overall accuracy and 96.36%, 52.63% and 95.83% sensitivities for Covid-19, Cap and Normal, respectively. From other hand, our approach achieved the fifth place on the three test datasets of SPGC on COVID-19 challenge where our approach achieved the best result for Covid-19 sensitivity.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781728176055</identifier><identifier>EISBN: 1728176050</identifier><identifier>DOI: 10.1109/ICASSP39728.2021.9414185</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Computer vision ; Conferences ; COVID-19 ; CT-scans ; Deep learning ; Multi-task strategy ; Pulmonary diseases ; Sensitivity ; Slice-Level classification</subject><ispartof>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, p.8568-8572</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-b6d1de48258beb2fe8a71a5349b6a737e21f6c69730bb7d31f6c1334c8cfe3823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9414185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9414185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bougourzi, Fares</creatorcontrib><creatorcontrib>Contino, Riccardo</creatorcontrib><creatorcontrib>Distante, Cosimo</creatorcontrib><creatorcontrib>Taleb-Ahmed, Abdelmalik</creatorcontrib><title>CNR-IEMN: A Deep Learning Based Approach to Recognise Covid-19 from CT-Scan</title><title>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The recognition of Covid-19 infection and distinguishing it from other Lung diseases from CT-scan is an emerging field in machine learning and computer vision community. In this paper, we proposed deep learning based approach to recognize the Covid-19 infection from the CT-scans. Our approach consists of two main stages. In the first stage, we trained deep learning architectures with Multi-task strategy for Slice-Level classification. In the second stage, we used the previous trained models with XG-boost classifier to classify the whole CT-scan into Normal, Covid-19 or Cap class. The evaluation of our approach achieved promising results on the validation data of SPGC-COVID dataset. In more details, our approach achieved 87.75% as overall accuracy and 96.36%, 52.63% and 95.83% sensitivities for Covid-19, Cap and Normal, respectively. From other hand, our approach achieved the fifth place on the three test datasets of SPGC on COVID-19 challenge where our approach achieved the best result for Covid-19 sensitivity.</description><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>COVID-19</subject><subject>CT-scans</subject><subject>Deep learning</subject><subject>Multi-task strategy</subject><subject>Pulmonary diseases</subject><subject>Sensitivity</subject><subject>Slice-Level classification</subject><issn>2379-190X</issn><isbn>9781728176055</isbn><isbn>1728176050</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FOwzAQRA0SEqX0C7j4Bxy8Xie2uZVQoCIU1BSJW-U4mxJEkyipkPh7guhp9ObwNMMYBxkBSHe9TOd5_orOKBspqSByGjTY-ITNnLEw1mASGcenbKLQOAFOvp-zi2H4lFJao-2EPaWrtVgunlc3fM7viDqeke-butnxWz9Qyedd17c-fPBDy9cU2l1TD8TT9rsuRx-v-nbP043Ig28u2VnlvwaaHXPK3u4Xm_RRZC8P49RMBNTqIIqkhJK0VbEtqFAVWW_Ax6hdkXiDhhRUSUicQVkUpsQ_AkQdbKgIrcIpu_r31kS07fp67_uf7fE7_gJyuUxC</recordid><startdate>20210606</startdate><enddate>20210606</enddate><creator>Bougourzi, Fares</creator><creator>Contino, Riccardo</creator><creator>Distante, Cosimo</creator><creator>Taleb-Ahmed, Abdelmalik</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210606</creationdate><title>CNR-IEMN: A Deep Learning Based Approach to Recognise Covid-19 from CT-Scan</title><author>Bougourzi, Fares ; Contino, Riccardo ; Distante, Cosimo ; Taleb-Ahmed, Abdelmalik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-b6d1de48258beb2fe8a71a5349b6a737e21f6c69730bb7d31f6c1334c8cfe3823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>COVID-19</topic><topic>CT-scans</topic><topic>Deep learning</topic><topic>Multi-task strategy</topic><topic>Pulmonary diseases</topic><topic>Sensitivity</topic><topic>Slice-Level classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Bougourzi, Fares</creatorcontrib><creatorcontrib>Contino, Riccardo</creatorcontrib><creatorcontrib>Distante, Cosimo</creatorcontrib><creatorcontrib>Taleb-Ahmed, Abdelmalik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bougourzi, Fares</au><au>Contino, Riccardo</au><au>Distante, Cosimo</au><au>Taleb-Ahmed, Abdelmalik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CNR-IEMN: A Deep Learning Based Approach to Recognise Covid-19 from CT-Scan</atitle><btitle>ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2021-06-06</date><risdate>2021</risdate><spage>8568</spage><epage>8572</epage><pages>8568-8572</pages><eissn>2379-190X</eissn><eisbn>9781728176055</eisbn><eisbn>1728176050</eisbn><abstract>The recognition of Covid-19 infection and distinguishing it from other Lung diseases from CT-scan is an emerging field in machine learning and computer vision community. In this paper, we proposed deep learning based approach to recognize the Covid-19 infection from the CT-scans. Our approach consists of two main stages. In the first stage, we trained deep learning architectures with Multi-task strategy for Slice-Level classification. In the second stage, we used the previous trained models with XG-boost classifier to classify the whole CT-scan into Normal, Covid-19 or Cap class. The evaluation of our approach achieved promising results on the validation data of SPGC-COVID dataset. In more details, our approach achieved 87.75% as overall accuracy and 96.36%, 52.63% and 95.83% sensitivities for Covid-19, Cap and Normal, respectively. From other hand, our approach achieved the fifth place on the three test datasets of SPGC on COVID-19 challenge where our approach achieved the best result for Covid-19 sensitivity.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP39728.2021.9414185</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, p.8568-8572 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_9414185 |
source | IEEE Xplore All Conference Series |
subjects | Computer architecture Computer vision Conferences COVID-19 CT-scans Deep learning Multi-task strategy Pulmonary diseases Sensitivity Slice-Level classification |
title | CNR-IEMN: A Deep Learning Based Approach to Recognise Covid-19 from CT-Scan |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CNR-IEMN:%20A%20Deep%20Learning%20Based%20Approach%20to%20Recognise%20Covid-19%20from%20CT-Scan&rft.btitle=ICASSP%202021%20-%202021%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Bougourzi,%20Fares&rft.date=2021-06-06&rft.spage=8568&rft.epage=8572&rft.pages=8568-8572&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP39728.2021.9414185&rft.eisbn=9781728176055&rft.eisbn_list=1728176050&rft_dat=%3Cieee_CHZPO%3E9414185%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-b6d1de48258beb2fe8a71a5349b6a737e21f6c69730bb7d31f6c1334c8cfe3823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9414185&rfr_iscdi=true |