Loading…
Frequency Response Analysis Interpretation Using Numerical Indices and Machine Learning: A Case Study Based on a Laboratory Model
Frequency response analysis is a powerful tool for mechanical fault diagnostics in power transformers. However, interpretation schemes still today depend on expert analyses, mainly because of the complex structure of power transformers. One of the fundamental shortcomings of experimental investigati...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.67051-67063 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-dc0c7262fdf064d13b9599fe8055ed8100217d136b9a8a1890b469c18088b5c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-dc0c7262fdf064d13b9599fe8055ed8100217d136b9a8a1890b469c18088b5c93 |
container_end_page | 67063 |
container_issue | |
container_start_page | 67051 |
container_title | IEEE access |
container_volume | 9 |
creator | De Andrade Ferreira, Regelii Suassuna Picher, Patrick Ezzaidi, Hassan Fofana, Issouf |
description | Frequency response analysis is a powerful tool for mechanical fault diagnostics in power transformers. However, interpretation schemes still today depend on expert analyses, mainly because of the complex structure of power transformers. One of the fundamental shortcomings of experimental investigations is that mechanical deformations cannot be managed on real transformers to obtain data for different scenarios because they are too destructive. To address this issue in a systematic way, the current research used a specially designed laboratory transformer model that allows mechanical defects to be introduced so its frequency response can be evaluated under different conditions. The key feature of this model is the non-destructive interchangeability of its winding sections, allowing reproducibility and repeatability of frequency response measurements. Numerical indices were compared over key performance indicators (linearity, sensitivity and monotonicity). The analysis indicated that comparative standard deviation offered promising results for evaluation of mechanical deformations on the laboratory winding model given its monotonic behaviour, sensitivity and linear increase with fault severity. Additionally, support vector machine learning, radial basis function neural network and the statistical k-nearest neighbour method were used for fault classification with different strategies and configurations. While limited data from different transformers are used in the available literature, the approach discussed here considers 371 measurements from the same transformer model. The test results are supportive and demonstrate great accuracy when machine learning is used for winding fault classification. |
doi_str_mv | 10.1109/ACCESS.2021.3076154 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9417212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9417212</ieee_id><doaj_id>oai_doaj_org_article_828a334cfb904ccf9dbc86c3c639ceb9</doaj_id><sourcerecordid>2522916963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-dc0c7262fdf064d13b9599fe8055ed8100217d136b9a8a1890b469c18088b5c93</originalsourceid><addsrcrecordid>eNpNUU1v1DAUjBBIVG1_QS-WOO_ij8SxuS1RCyttQWLp2XKeX4pXqb3Y2UOO_ed4SVXVFz-NZ-bJM1V1w-iaMao_b7rudr9fc8rZWtBWsqZ-V11wJvVKNEK-fzN_rK5zPtByVIGa9qJ6vkv494QBZvIL8zGGjGQT7Dhnn8k2TJiOCSc7-RjIQ_bhkfw4PWHyYMfy7DxgJjY4cm_hjw9IdmhTKLQvZEM6W8z208nN5GsZHSkeluxsH5OdYprJfXQ4XlUfBjtmvH65L6uHu9vf3ffV7ue3bbfZraCmalo5oNByyQc3UFk7JnrdaD2gok2DTjFavt8WWPbaKsuUpn0tNTBFleob0OKy2i6-LtqDOSb_ZNNsovXmPxDTo7Fp8jCiUVxZIWoYek1rgEG7HpQEAVJowP7s9WnxOqZY0suTOcRTKrFlwxvOdQlXisISCwtSzDnh8LqVUXOuzizVmXN15qW6orpZVB4RXxW6Zi1nXPwDmdmU_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522916963</pqid></control><display><type>article</type><title>Frequency Response Analysis Interpretation Using Numerical Indices and Machine Learning: A Case Study Based on a Laboratory Model</title><source>IEEE Xplore Open Access Journals</source><creator>De Andrade Ferreira, Regelii Suassuna ; Picher, Patrick ; Ezzaidi, Hassan ; Fofana, Issouf</creator><creatorcontrib>De Andrade Ferreira, Regelii Suassuna ; Picher, Patrick ; Ezzaidi, Hassan ; Fofana, Issouf</creatorcontrib><description>Frequency response analysis is a powerful tool for mechanical fault diagnostics in power transformers. However, interpretation schemes still today depend on expert analyses, mainly because of the complex structure of power transformers. One of the fundamental shortcomings of experimental investigations is that mechanical deformations cannot be managed on real transformers to obtain data for different scenarios because they are too destructive. To address this issue in a systematic way, the current research used a specially designed laboratory transformer model that allows mechanical defects to be introduced so its frequency response can be evaluated under different conditions. The key feature of this model is the non-destructive interchangeability of its winding sections, allowing reproducibility and repeatability of frequency response measurements. Numerical indices were compared over key performance indicators (linearity, sensitivity and monotonicity). The analysis indicated that comparative standard deviation offered promising results for evaluation of mechanical deformations on the laboratory winding model given its monotonic behaviour, sensitivity and linear increase with fault severity. Additionally, support vector machine learning, radial basis function neural network and the statistical k-nearest neighbour method were used for fault classification with different strategies and configurations. While limited data from different transformers are used in the available literature, the approach discussed here considers 371 measurements from the same transformer model. The test results are supportive and demonstrate great accuracy when machine learning is used for winding fault classification.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3076154</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Condition monitoring ; Current measurement ; Deformation ; Fault diagnosis ; Frequency analysis ; Frequency measurement ; Frequency response ; frequency response analysis interpretation ; Indexes ; Laboratories ; Linearity ; Machine learning ; Mathematical models ; Model testing ; Neural networks ; numerical indices ; Numerical models ; Power transformer insulation ; power transformers ; Radial basis function ; Reproducibility ; Sensitivity analysis ; Support vector machines ; Transformers ; Winding ; Windings</subject><ispartof>IEEE access, 2021, Vol.9, p.67051-67063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-dc0c7262fdf064d13b9599fe8055ed8100217d136b9a8a1890b469c18088b5c93</citedby><cites>FETCH-LOGICAL-c408t-dc0c7262fdf064d13b9599fe8055ed8100217d136b9a8a1890b469c18088b5c93</cites><orcidid>0000-0002-0445-999X ; 0000-0002-1940-4561 ; 0000-0003-2157-0419 ; 0000-0001-7141-9173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9417212$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>De Andrade Ferreira, Regelii Suassuna</creatorcontrib><creatorcontrib>Picher, Patrick</creatorcontrib><creatorcontrib>Ezzaidi, Hassan</creatorcontrib><creatorcontrib>Fofana, Issouf</creatorcontrib><title>Frequency Response Analysis Interpretation Using Numerical Indices and Machine Learning: A Case Study Based on a Laboratory Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Frequency response analysis is a powerful tool for mechanical fault diagnostics in power transformers. However, interpretation schemes still today depend on expert analyses, mainly because of the complex structure of power transformers. One of the fundamental shortcomings of experimental investigations is that mechanical deformations cannot be managed on real transformers to obtain data for different scenarios because they are too destructive. To address this issue in a systematic way, the current research used a specially designed laboratory transformer model that allows mechanical defects to be introduced so its frequency response can be evaluated under different conditions. The key feature of this model is the non-destructive interchangeability of its winding sections, allowing reproducibility and repeatability of frequency response measurements. Numerical indices were compared over key performance indicators (linearity, sensitivity and monotonicity). The analysis indicated that comparative standard deviation offered promising results for evaluation of mechanical deformations on the laboratory winding model given its monotonic behaviour, sensitivity and linear increase with fault severity. Additionally, support vector machine learning, radial basis function neural network and the statistical k-nearest neighbour method were used for fault classification with different strategies and configurations. While limited data from different transformers are used in the available literature, the approach discussed here considers 371 measurements from the same transformer model. The test results are supportive and demonstrate great accuracy when machine learning is used for winding fault classification.</description><subject>Classification</subject><subject>Condition monitoring</subject><subject>Current measurement</subject><subject>Deformation</subject><subject>Fault diagnosis</subject><subject>Frequency analysis</subject><subject>Frequency measurement</subject><subject>Frequency response</subject><subject>frequency response analysis interpretation</subject><subject>Indexes</subject><subject>Laboratories</subject><subject>Linearity</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Neural networks</subject><subject>numerical indices</subject><subject>Numerical models</subject><subject>Power transformer insulation</subject><subject>power transformers</subject><subject>Radial basis function</subject><subject>Reproducibility</subject><subject>Sensitivity analysis</subject><subject>Support vector machines</subject><subject>Transformers</subject><subject>Winding</subject><subject>Windings</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAUjBBIVG1_QS-WOO_ij8SxuS1RCyttQWLp2XKeX4pXqb3Y2UOO_ed4SVXVFz-NZ-bJM1V1w-iaMao_b7rudr9fc8rZWtBWsqZ-V11wJvVKNEK-fzN_rK5zPtByVIGa9qJ6vkv494QBZvIL8zGGjGQT7Dhnn8k2TJiOCSc7-RjIQ_bhkfw4PWHyYMfy7DxgJjY4cm_hjw9IdmhTKLQvZEM6W8z208nN5GsZHSkeluxsH5OdYprJfXQ4XlUfBjtmvH65L6uHu9vf3ffV7ue3bbfZraCmalo5oNByyQc3UFk7JnrdaD2gok2DTjFavt8WWPbaKsuUpn0tNTBFleob0OKy2i6-LtqDOSb_ZNNsovXmPxDTo7Fp8jCiUVxZIWoYek1rgEG7HpQEAVJowP7s9WnxOqZY0suTOcRTKrFlwxvOdQlXisISCwtSzDnh8LqVUXOuzizVmXN15qW6orpZVB4RXxW6Zi1nXPwDmdmU_g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>De Andrade Ferreira, Regelii Suassuna</creator><creator>Picher, Patrick</creator><creator>Ezzaidi, Hassan</creator><creator>Fofana, Issouf</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0445-999X</orcidid><orcidid>https://orcid.org/0000-0002-1940-4561</orcidid><orcidid>https://orcid.org/0000-0003-2157-0419</orcidid><orcidid>https://orcid.org/0000-0001-7141-9173</orcidid></search><sort><creationdate>2021</creationdate><title>Frequency Response Analysis Interpretation Using Numerical Indices and Machine Learning: A Case Study Based on a Laboratory Model</title><author>De Andrade Ferreira, Regelii Suassuna ; Picher, Patrick ; Ezzaidi, Hassan ; Fofana, Issouf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-dc0c7262fdf064d13b9599fe8055ed8100217d136b9a8a1890b469c18088b5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Condition monitoring</topic><topic>Current measurement</topic><topic>Deformation</topic><topic>Fault diagnosis</topic><topic>Frequency analysis</topic><topic>Frequency measurement</topic><topic>Frequency response</topic><topic>frequency response analysis interpretation</topic><topic>Indexes</topic><topic>Laboratories</topic><topic>Linearity</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Neural networks</topic><topic>numerical indices</topic><topic>Numerical models</topic><topic>Power transformer insulation</topic><topic>power transformers</topic><topic>Radial basis function</topic><topic>Reproducibility</topic><topic>Sensitivity analysis</topic><topic>Support vector machines</topic><topic>Transformers</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Andrade Ferreira, Regelii Suassuna</creatorcontrib><creatorcontrib>Picher, Patrick</creatorcontrib><creatorcontrib>Ezzaidi, Hassan</creatorcontrib><creatorcontrib>Fofana, Issouf</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Andrade Ferreira, Regelii Suassuna</au><au>Picher, Patrick</au><au>Ezzaidi, Hassan</au><au>Fofana, Issouf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency Response Analysis Interpretation Using Numerical Indices and Machine Learning: A Case Study Based on a Laboratory Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>67051</spage><epage>67063</epage><pages>67051-67063</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Frequency response analysis is a powerful tool for mechanical fault diagnostics in power transformers. However, interpretation schemes still today depend on expert analyses, mainly because of the complex structure of power transformers. One of the fundamental shortcomings of experimental investigations is that mechanical deformations cannot be managed on real transformers to obtain data for different scenarios because they are too destructive. To address this issue in a systematic way, the current research used a specially designed laboratory transformer model that allows mechanical defects to be introduced so its frequency response can be evaluated under different conditions. The key feature of this model is the non-destructive interchangeability of its winding sections, allowing reproducibility and repeatability of frequency response measurements. Numerical indices were compared over key performance indicators (linearity, sensitivity and monotonicity). The analysis indicated that comparative standard deviation offered promising results for evaluation of mechanical deformations on the laboratory winding model given its monotonic behaviour, sensitivity and linear increase with fault severity. Additionally, support vector machine learning, radial basis function neural network and the statistical k-nearest neighbour method were used for fault classification with different strategies and configurations. While limited data from different transformers are used in the available literature, the approach discussed here considers 371 measurements from the same transformer model. The test results are supportive and demonstrate great accuracy when machine learning is used for winding fault classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3076154</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0445-999X</orcidid><orcidid>https://orcid.org/0000-0002-1940-4561</orcidid><orcidid>https://orcid.org/0000-0003-2157-0419</orcidid><orcidid>https://orcid.org/0000-0001-7141-9173</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.67051-67063 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9417212 |
source | IEEE Xplore Open Access Journals |
subjects | Classification Condition monitoring Current measurement Deformation Fault diagnosis Frequency analysis Frequency measurement Frequency response frequency response analysis interpretation Indexes Laboratories Linearity Machine learning Mathematical models Model testing Neural networks numerical indices Numerical models Power transformer insulation power transformers Radial basis function Reproducibility Sensitivity analysis Support vector machines Transformers Winding Windings |
title | Frequency Response Analysis Interpretation Using Numerical Indices and Machine Learning: A Case Study Based on a Laboratory Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20Response%20Analysis%20Interpretation%20Using%20Numerical%20Indices%20and%20Machine%20Learning:%20A%20Case%20Study%20Based%20on%20a%20Laboratory%20Model&rft.jtitle=IEEE%20access&rft.au=De%20Andrade%20Ferreira,%20Regelii%20Suassuna&rft.date=2021&rft.volume=9&rft.spage=67051&rft.epage=67063&rft.pages=67051-67063&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3076154&rft_dat=%3Cproquest_ieee_%3E2522916963%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-dc0c7262fdf064d13b9599fe8055ed8100217d136b9a8a1890b469c18088b5c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522916963&rft_id=info:pmid/&rft_ieee_id=9417212&rfr_iscdi=true |