Loading…

Hidden Markov models for chromosome identification

Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard da...

Full description

Saved in:
Bibliographic Details
Main Authors: Conroy, J.M., Becker, R.L., Lefkowitz, W., Christopher, K.L., Surana, R.B., O'Leary, T., O'Leary, D.P., Kolda, T.G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 477
container_issue
container_start_page 473
container_title
container_volume
creator Conroy, J.M.
Becker, R.L.
Lefkowitz, W.
Christopher, K.L.
Surana, R.B.
O'Leary, T.
O'Leary, D.P.
Kolda, T.G.
description Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard data sets. In this paper, we evaluate it on a data set consisting of a mix of chromosomes obtained from blood, amniotic fluid and bone marrow specimens. The method is shown to be robust on this mixed set of data, as well as giving far superior results than those obtained by neural networks.
doi_str_mv 10.1109/CBMS.2001.941764
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_941764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>941764</ieee_id><sourcerecordid>941764</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1f34221cea6aae8b38542c589c7bba9266daefb1ab744f0674d88b5185cad9f33</originalsourceid><addsrcrecordid>eNotj8tKA0EQRRtUMMbsxdX8wMSqfvdSB02EBBfqOlS_sDWTlplB8O8NxLs5m8OBy9gNwhIR3F33sH1dcgBcOolGyzN2BUY7hQBSnLMZghatQa4u2WIcP-E4qaQ1dsb4usSYDs2Whq_60_Q1pv3Y5Do04WOofR1rn5pyNKaSS6Cp1MM1u8i0H9Pin3P2_vT41q3bzcvqubvftIWDmFrMQnKOIZEmStYLqyQPyrpgvCfHtY6UskfyRsoM2shorVdoVaDoshBzdnvqlpTS7nsoPQ2_u9ND8Qf1a0Si</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hidden Markov models for chromosome identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Conroy, J.M. ; Becker, R.L. ; Lefkowitz, W. ; Christopher, K.L. ; Surana, R.B. ; O'Leary, T. ; O'Leary, D.P. ; Kolda, T.G.</creator><creatorcontrib>Conroy, J.M. ; Becker, R.L. ; Lefkowitz, W. ; Christopher, K.L. ; Surana, R.B. ; O'Leary, T. ; O'Leary, D.P. ; Kolda, T.G.</creatorcontrib><description>Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard data sets. In this paper, we evaluate it on a data set consisting of a mix of chromosomes obtained from blood, amniotic fluid and bone marrow specimens. The method is shown to be robust on this mixed set of data, as well as giving far superior results than those obtained by neural networks.</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 0769510043</identifier><identifier>ISBN: 9780769510040</identifier><identifier>DOI: 10.1109/CBMS.2001.941764</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amniotic fluid ; Biological cells ; Biological neural networks ; Blood ; Bones ; Hidden Markov models ; Military computing ; Neural networks ; Pathology ; Robustness</subject><ispartof>Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001, 2001, p.473-477</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/941764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/941764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Conroy, J.M.</creatorcontrib><creatorcontrib>Becker, R.L.</creatorcontrib><creatorcontrib>Lefkowitz, W.</creatorcontrib><creatorcontrib>Christopher, K.L.</creatorcontrib><creatorcontrib>Surana, R.B.</creatorcontrib><creatorcontrib>O'Leary, T.</creatorcontrib><creatorcontrib>O'Leary, D.P.</creatorcontrib><creatorcontrib>Kolda, T.G.</creatorcontrib><title>Hidden Markov models for chromosome identification</title><title>Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001</title><addtitle>CBMS</addtitle><description>Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard data sets. In this paper, we evaluate it on a data set consisting of a mix of chromosomes obtained from blood, amniotic fluid and bone marrow specimens. The method is shown to be robust on this mixed set of data, as well as giving far superior results than those obtained by neural networks.</description><subject>Amniotic fluid</subject><subject>Biological cells</subject><subject>Biological neural networks</subject><subject>Blood</subject><subject>Bones</subject><subject>Hidden Markov models</subject><subject>Military computing</subject><subject>Neural networks</subject><subject>Pathology</subject><subject>Robustness</subject><issn>1063-7125</issn><isbn>0769510043</isbn><isbn>9780769510040</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKA0EQRRtUMMbsxdX8wMSqfvdSB02EBBfqOlS_sDWTlplB8O8NxLs5m8OBy9gNwhIR3F33sH1dcgBcOolGyzN2BUY7hQBSnLMZghatQa4u2WIcP-E4qaQ1dsb4usSYDs2Whq_60_Q1pv3Y5Do04WOofR1rn5pyNKaSS6Cp1MM1u8i0H9Pin3P2_vT41q3bzcvqubvftIWDmFrMQnKOIZEmStYLqyQPyrpgvCfHtY6UskfyRsoM2shorVdoVaDoshBzdnvqlpTS7nsoPQ2_u9ND8Qf1a0Si</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Conroy, J.M.</creator><creator>Becker, R.L.</creator><creator>Lefkowitz, W.</creator><creator>Christopher, K.L.</creator><creator>Surana, R.B.</creator><creator>O'Leary, T.</creator><creator>O'Leary, D.P.</creator><creator>Kolda, T.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Hidden Markov models for chromosome identification</title><author>Conroy, J.M. ; Becker, R.L. ; Lefkowitz, W. ; Christopher, K.L. ; Surana, R.B. ; O'Leary, T. ; O'Leary, D.P. ; Kolda, T.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1f34221cea6aae8b38542c589c7bba9266daefb1ab744f0674d88b5185cad9f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amniotic fluid</topic><topic>Biological cells</topic><topic>Biological neural networks</topic><topic>Blood</topic><topic>Bones</topic><topic>Hidden Markov models</topic><topic>Military computing</topic><topic>Neural networks</topic><topic>Pathology</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Conroy, J.M.</creatorcontrib><creatorcontrib>Becker, R.L.</creatorcontrib><creatorcontrib>Lefkowitz, W.</creatorcontrib><creatorcontrib>Christopher, K.L.</creatorcontrib><creatorcontrib>Surana, R.B.</creatorcontrib><creatorcontrib>O'Leary, T.</creatorcontrib><creatorcontrib>O'Leary, D.P.</creatorcontrib><creatorcontrib>Kolda, T.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Conroy, J.M.</au><au>Becker, R.L.</au><au>Lefkowitz, W.</au><au>Christopher, K.L.</au><au>Surana, R.B.</au><au>O'Leary, T.</au><au>O'Leary, D.P.</au><au>Kolda, T.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hidden Markov models for chromosome identification</atitle><btitle>Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001</btitle><stitle>CBMS</stitle><date>2001</date><risdate>2001</risdate><spage>473</spage><epage>477</epage><pages>473-477</pages><issn>1063-7125</issn><isbn>0769510043</isbn><isbn>9780769510040</isbn><abstract>Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard data sets. In this paper, we evaluate it on a data set consisting of a mix of chromosomes obtained from blood, amniotic fluid and bone marrow specimens. The method is shown to be robust on this mixed set of data, as well as giving far superior results than those obtained by neural networks.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2001.941764</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-7125
ispartof Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001, 2001, p.473-477
issn 1063-7125
language eng
recordid cdi_ieee_primary_941764
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Amniotic fluid
Biological cells
Biological neural networks
Blood
Bones
Hidden Markov models
Military computing
Neural networks
Pathology
Robustness
title Hidden Markov models for chromosome identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hidden%20Markov%20models%20for%20chromosome%20identification&rft.btitle=Proceedings%2014th%20IEEE%20Symposium%20on%20Computer-Based%20Medical%20Systems.%20CBMS%202001&rft.au=Conroy,%20J.M.&rft.date=2001&rft.spage=473&rft.epage=477&rft.pages=473-477&rft.issn=1063-7125&rft.isbn=0769510043&rft.isbn_list=9780769510040&rft_id=info:doi/10.1109/CBMS.2001.941764&rft_dat=%3Cieee_6IE%3E941764%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1f34221cea6aae8b38542c589c7bba9266daefb1ab744f0674d88b5185cad9f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=941764&rfr_iscdi=true