Loading…
Hidden Markov models for chromosome identification
Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard da...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 477 |
container_issue | |
container_start_page | 473 |
container_title | |
container_volume | |
creator | Conroy, J.M. Becker, R.L. Lefkowitz, W. Christopher, K.L. Surana, R.B. O'Leary, T. O'Leary, D.P. Kolda, T.G. |
description | Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard data sets. In this paper, we evaluate it on a data set consisting of a mix of chromosomes obtained from blood, amniotic fluid and bone marrow specimens. The method is shown to be robust on this mixed set of data, as well as giving far superior results than those obtained by neural networks. |
doi_str_mv | 10.1109/CBMS.2001.941764 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_941764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>941764</ieee_id><sourcerecordid>941764</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1f34221cea6aae8b38542c589c7bba9266daefb1ab744f0674d88b5185cad9f33</originalsourceid><addsrcrecordid>eNotj8tKA0EQRRtUMMbsxdX8wMSqfvdSB02EBBfqOlS_sDWTlplB8O8NxLs5m8OBy9gNwhIR3F33sH1dcgBcOolGyzN2BUY7hQBSnLMZghatQa4u2WIcP-E4qaQ1dsb4usSYDs2Whq_60_Q1pv3Y5Do04WOofR1rn5pyNKaSS6Cp1MM1u8i0H9Pin3P2_vT41q3bzcvqubvftIWDmFrMQnKOIZEmStYLqyQPyrpgvCfHtY6UskfyRsoM2shorVdoVaDoshBzdnvqlpTS7nsoPQ2_u9ND8Qf1a0Si</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hidden Markov models for chromosome identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Conroy, J.M. ; Becker, R.L. ; Lefkowitz, W. ; Christopher, K.L. ; Surana, R.B. ; O'Leary, T. ; O'Leary, D.P. ; Kolda, T.G.</creator><creatorcontrib>Conroy, J.M. ; Becker, R.L. ; Lefkowitz, W. ; Christopher, K.L. ; Surana, R.B. ; O'Leary, T. ; O'Leary, D.P. ; Kolda, T.G.</creatorcontrib><description>Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard data sets. In this paper, we evaluate it on a data set consisting of a mix of chromosomes obtained from blood, amniotic fluid and bone marrow specimens. The method is shown to be robust on this mixed set of data, as well as giving far superior results than those obtained by neural networks.</description><identifier>ISSN: 1063-7125</identifier><identifier>ISBN: 0769510043</identifier><identifier>ISBN: 9780769510040</identifier><identifier>DOI: 10.1109/CBMS.2001.941764</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amniotic fluid ; Biological cells ; Biological neural networks ; Blood ; Bones ; Hidden Markov models ; Military computing ; Neural networks ; Pathology ; Robustness</subject><ispartof>Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001, 2001, p.473-477</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/941764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/941764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Conroy, J.M.</creatorcontrib><creatorcontrib>Becker, R.L.</creatorcontrib><creatorcontrib>Lefkowitz, W.</creatorcontrib><creatorcontrib>Christopher, K.L.</creatorcontrib><creatorcontrib>Surana, R.B.</creatorcontrib><creatorcontrib>O'Leary, T.</creatorcontrib><creatorcontrib>O'Leary, D.P.</creatorcontrib><creatorcontrib>Kolda, T.G.</creatorcontrib><title>Hidden Markov models for chromosome identification</title><title>Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001</title><addtitle>CBMS</addtitle><description>Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard data sets. In this paper, we evaluate it on a data set consisting of a mix of chromosomes obtained from blood, amniotic fluid and bone marrow specimens. The method is shown to be robust on this mixed set of data, as well as giving far superior results than those obtained by neural networks.</description><subject>Amniotic fluid</subject><subject>Biological cells</subject><subject>Biological neural networks</subject><subject>Blood</subject><subject>Bones</subject><subject>Hidden Markov models</subject><subject>Military computing</subject><subject>Neural networks</subject><subject>Pathology</subject><subject>Robustness</subject><issn>1063-7125</issn><isbn>0769510043</isbn><isbn>9780769510040</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKA0EQRRtUMMbsxdX8wMSqfvdSB02EBBfqOlS_sDWTlplB8O8NxLs5m8OBy9gNwhIR3F33sH1dcgBcOolGyzN2BUY7hQBSnLMZghatQa4u2WIcP-E4qaQ1dsb4usSYDs2Whq_60_Q1pv3Y5Do04WOofR1rn5pyNKaSS6Cp1MM1u8i0H9Pin3P2_vT41q3bzcvqubvftIWDmFrMQnKOIZEmStYLqyQPyrpgvCfHtY6UskfyRsoM2shorVdoVaDoshBzdnvqlpTS7nsoPQ2_u9ND8Qf1a0Si</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Conroy, J.M.</creator><creator>Becker, R.L.</creator><creator>Lefkowitz, W.</creator><creator>Christopher, K.L.</creator><creator>Surana, R.B.</creator><creator>O'Leary, T.</creator><creator>O'Leary, D.P.</creator><creator>Kolda, T.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Hidden Markov models for chromosome identification</title><author>Conroy, J.M. ; Becker, R.L. ; Lefkowitz, W. ; Christopher, K.L. ; Surana, R.B. ; O'Leary, T. ; O'Leary, D.P. ; Kolda, T.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1f34221cea6aae8b38542c589c7bba9266daefb1ab744f0674d88b5185cad9f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amniotic fluid</topic><topic>Biological cells</topic><topic>Biological neural networks</topic><topic>Blood</topic><topic>Bones</topic><topic>Hidden Markov models</topic><topic>Military computing</topic><topic>Neural networks</topic><topic>Pathology</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Conroy, J.M.</creatorcontrib><creatorcontrib>Becker, R.L.</creatorcontrib><creatorcontrib>Lefkowitz, W.</creatorcontrib><creatorcontrib>Christopher, K.L.</creatorcontrib><creatorcontrib>Surana, R.B.</creatorcontrib><creatorcontrib>O'Leary, T.</creatorcontrib><creatorcontrib>O'Leary, D.P.</creatorcontrib><creatorcontrib>Kolda, T.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Conroy, J.M.</au><au>Becker, R.L.</au><au>Lefkowitz, W.</au><au>Christopher, K.L.</au><au>Surana, R.B.</au><au>O'Leary, T.</au><au>O'Leary, D.P.</au><au>Kolda, T.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hidden Markov models for chromosome identification</atitle><btitle>Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001</btitle><stitle>CBMS</stitle><date>2001</date><risdate>2001</risdate><spage>473</spage><epage>477</epage><pages>473-477</pages><issn>1063-7125</issn><isbn>0769510043</isbn><isbn>9780769510040</isbn><abstract>Presents a hidden Markov model for automatic karyotyping. Previously, we demonstrated that this method is robust in the presence of different types of metaphase spreads, truncation of chromosomes and minor chromosome abnormalities, and that it gives results superior to neural networks on standard data sets. In this paper, we evaluate it on a data set consisting of a mix of chromosomes obtained from blood, amniotic fluid and bone marrow specimens. The method is shown to be robust on this mixed set of data, as well as giving far superior results than those obtained by neural networks.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2001.941764</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-7125 |
ispartof | Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001, 2001, p.473-477 |
issn | 1063-7125 |
language | eng |
recordid | cdi_ieee_primary_941764 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Amniotic fluid Biological cells Biological neural networks Blood Bones Hidden Markov models Military computing Neural networks Pathology Robustness |
title | Hidden Markov models for chromosome identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hidden%20Markov%20models%20for%20chromosome%20identification&rft.btitle=Proceedings%2014th%20IEEE%20Symposium%20on%20Computer-Based%20Medical%20Systems.%20CBMS%202001&rft.au=Conroy,%20J.M.&rft.date=2001&rft.spage=473&rft.epage=477&rft.pages=473-477&rft.issn=1063-7125&rft.isbn=0769510043&rft.isbn_list=9780769510040&rft_id=info:doi/10.1109/CBMS.2001.941764&rft_dat=%3Cieee_6IE%3E941764%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1f34221cea6aae8b38542c589c7bba9266daefb1ab744f0674d88b5185cad9f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=941764&rfr_iscdi=true |