Loading…

Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods

Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the w...

Full description

Saved in:
Bibliographic Details
Main Authors: Ozceylan, Baver, Haverkort, Boudewijn R., de Graaf, Maurits, Gerards, Marco E. T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 42
container_issue
container_start_page 37
container_title
container_volume
creator Ozceylan, Baver
Haverkort, Boudewijn R.
de Graaf, Maurits
Gerards, Marco E. T.
description Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the workloads according to these predictions. This means that more accurate predictions can improve the reliability, lifetime and energy-efficiency of devices. We introduce two different generic methods to extend a thermal model to improve the prediction accuracy. The first method is to extend a thermal model with a Kalman filter. This approach enables a device to adapt to environmental changes more easily and to reduce the effect of noise by combining sensor data and dynamic behavior of the system. However, it assumes every random variable to be normally distributed. The second method is to extend a thermal model with a particle filter. In addition to the ability of adapting better to environmental changes, this approach enables a device to approximate any arbitrary distribution to reduce the effect of noise. Both methods are applicable to any dynamic thermal model to improve its prediction accuracy. Our experimental results show that the new methods indeed improve the prediction accuracy.
doi_str_mv 10.1109/THERMINIC49743.2020.9420535
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9420535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9420535</ieee_id><sourcerecordid>9420535</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1715-5205b7327ec9a9c5a93aa94438ac8ac5333ea5a2975ea0a269dcaa54988481ba3</originalsourceid><addsrcrecordid>eNotUFFrwjAYzAaDiesv2Etgz3VJvqRpHqXoLNNNhj7LZ_pty2irpHXgv19lwh33cMdxHGNPUkykFO55s5h9rMq3stDOapgoocTEaSUMmBuWOJtLqwZmGuwtGyltdSqNgnuWdN2PEEJmMoPcjdi2bI7x8BvaL76h5kgR-1Mkvo5UBd-HQ8un3p8i-jPfdpfUK9YNthzbiq8x9sHXxOeh7ile3BX134eqe2B3n1h3lFx1zLbz2aZYpMv3l7KYLtMgrTSpGQbvLShL3qHzBh0gOq0hRz_AAAChQeWsIRSoMld5RKNdnutc7hHG7PG_NxDR7hhDg_G8ux4Bf_wsVEo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods</title><source>IEEE Xplore All Conference Series</source><creator>Ozceylan, Baver ; Haverkort, Boudewijn R. ; de Graaf, Maurits ; Gerards, Marco E. T.</creator><creatorcontrib>Ozceylan, Baver ; Haverkort, Boudewijn R. ; de Graaf, Maurits ; Gerards, Marco E. T.</creatorcontrib><description>Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the workloads according to these predictions. This means that more accurate predictions can improve the reliability, lifetime and energy-efficiency of devices. We introduce two different generic methods to extend a thermal model to improve the prediction accuracy. The first method is to extend a thermal model with a Kalman filter. This approach enables a device to adapt to environmental changes more easily and to reduce the effect of noise by combining sensor data and dynamic behavior of the system. However, it assumes every random variable to be normally distributed. The second method is to extend a thermal model with a particle filter. In addition to the ability of adapting better to environmental changes, this approach enables a device to approximate any arbitrary distribution to reduce the effect of noise. Both methods are applicable to any dynamic thermal model to improve its prediction accuracy. Our experimental results show that the new methods indeed improve the prediction accuracy.</description><identifier>EISSN: 2474-1523</identifier><identifier>EISBN: 9781728176437</identifier><identifier>EISBN: 1728176433</identifier><identifier>DOI: 10.1109/THERMINIC49743.2020.9420535</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Filtering ; Particle filters ; Performance evaluation ; Predictive models ; Random variables ; Schedules</subject><ispartof>2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2020, p.37-42</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9420535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9420535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ozceylan, Baver</creatorcontrib><creatorcontrib>Haverkort, Boudewijn R.</creatorcontrib><creatorcontrib>de Graaf, Maurits</creatorcontrib><creatorcontrib>Gerards, Marco E. T.</creatorcontrib><title>Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods</title><title>2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)</title><addtitle>THERMINIC</addtitle><description>Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the workloads according to these predictions. This means that more accurate predictions can improve the reliability, lifetime and energy-efficiency of devices. We introduce two different generic methods to extend a thermal model to improve the prediction accuracy. The first method is to extend a thermal model with a Kalman filter. This approach enables a device to adapt to environmental changes more easily and to reduce the effect of noise by combining sensor data and dynamic behavior of the system. However, it assumes every random variable to be normally distributed. The second method is to extend a thermal model with a particle filter. In addition to the ability of adapting better to environmental changes, this approach enables a device to approximate any arbitrary distribution to reduce the effect of noise. Both methods are applicable to any dynamic thermal model to improve its prediction accuracy. Our experimental results show that the new methods indeed improve the prediction accuracy.</description><subject>Adaptation models</subject><subject>Filtering</subject><subject>Particle filters</subject><subject>Performance evaluation</subject><subject>Predictive models</subject><subject>Random variables</subject><subject>Schedules</subject><issn>2474-1523</issn><isbn>9781728176437</isbn><isbn>1728176433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUFFrwjAYzAaDiesv2Etgz3VJvqRpHqXoLNNNhj7LZ_pty2irpHXgv19lwh33cMdxHGNPUkykFO55s5h9rMq3stDOapgoocTEaSUMmBuWOJtLqwZmGuwtGyltdSqNgnuWdN2PEEJmMoPcjdi2bI7x8BvaL76h5kgR-1Mkvo5UBd-HQ8un3p8i-jPfdpfUK9YNthzbiq8x9sHXxOeh7ile3BX134eqe2B3n1h3lFx1zLbz2aZYpMv3l7KYLtMgrTSpGQbvLShL3qHzBh0gOq0hRz_AAAChQeWsIRSoMld5RKNdnutc7hHG7PG_NxDR7hhDg_G8ux4Bf_wsVEo</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Ozceylan, Baver</creator><creator>Haverkort, Boudewijn R.</creator><creator>de Graaf, Maurits</creator><creator>Gerards, Marco E. T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200914</creationdate><title>Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods</title><author>Ozceylan, Baver ; Haverkort, Boudewijn R. ; de Graaf, Maurits ; Gerards, Marco E. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1715-5205b7327ec9a9c5a93aa94438ac8ac5333ea5a2975ea0a269dcaa54988481ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Filtering</topic><topic>Particle filters</topic><topic>Performance evaluation</topic><topic>Predictive models</topic><topic>Random variables</topic><topic>Schedules</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozceylan, Baver</creatorcontrib><creatorcontrib>Haverkort, Boudewijn R.</creatorcontrib><creatorcontrib>de Graaf, Maurits</creatorcontrib><creatorcontrib>Gerards, Marco E. T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozceylan, Baver</au><au>Haverkort, Boudewijn R.</au><au>de Graaf, Maurits</au><au>Gerards, Marco E. T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods</atitle><btitle>2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)</btitle><stitle>THERMINIC</stitle><date>2020-09-14</date><risdate>2020</risdate><spage>37</spage><epage>42</epage><pages>37-42</pages><eissn>2474-1523</eissn><eisbn>9781728176437</eisbn><eisbn>1728176433</eisbn><abstract>Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the workloads according to these predictions. This means that more accurate predictions can improve the reliability, lifetime and energy-efficiency of devices. We introduce two different generic methods to extend a thermal model to improve the prediction accuracy. The first method is to extend a thermal model with a Kalman filter. This approach enables a device to adapt to environmental changes more easily and to reduce the effect of noise by combining sensor data and dynamic behavior of the system. However, it assumes every random variable to be normally distributed. The second method is to extend a thermal model with a particle filter. In addition to the ability of adapting better to environmental changes, this approach enables a device to approximate any arbitrary distribution to reduce the effect of noise. Both methods are applicable to any dynamic thermal model to improve its prediction accuracy. Our experimental results show that the new methods indeed improve the prediction accuracy.</abstract><pub>IEEE</pub><doi>10.1109/THERMINIC49743.2020.9420535</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2474-1523
ispartof 2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2020, p.37-42
issn 2474-1523
language eng
recordid cdi_ieee_primary_9420535
source IEEE Xplore All Conference Series
subjects Adaptation models
Filtering
Particle filters
Performance evaluation
Predictive models
Random variables
Schedules
title Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20Temperature%20Prediction%20Accuracy%20Using%20Kalman%20and%20Particle%20Filtering%20Methods&rft.btitle=2020%2026th%20International%20Workshop%20on%20Thermal%20Investigations%20of%20ICs%20and%20Systems%20(THERMINIC)&rft.au=Ozceylan,%20Baver&rft.date=2020-09-14&rft.spage=37&rft.epage=42&rft.pages=37-42&rft.eissn=2474-1523&rft_id=info:doi/10.1109/THERMINIC49743.2020.9420535&rft.eisbn=9781728176437&rft.eisbn_list=1728176433&rft_dat=%3Cieee_CHZPO%3E9420535%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1715-5205b7327ec9a9c5a93aa94438ac8ac5333ea5a2975ea0a269dcaa54988481ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9420535&rfr_iscdi=true