Loading…
Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods
Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the w...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 42 |
container_issue | |
container_start_page | 37 |
container_title | |
container_volume | |
creator | Ozceylan, Baver Haverkort, Boudewijn R. de Graaf, Maurits Gerards, Marco E. T. |
description | Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the workloads according to these predictions. This means that more accurate predictions can improve the reliability, lifetime and energy-efficiency of devices. We introduce two different generic methods to extend a thermal model to improve the prediction accuracy. The first method is to extend a thermal model with a Kalman filter. This approach enables a device to adapt to environmental changes more easily and to reduce the effect of noise by combining sensor data and dynamic behavior of the system. However, it assumes every random variable to be normally distributed. The second method is to extend a thermal model with a particle filter. In addition to the ability of adapting better to environmental changes, this approach enables a device to approximate any arbitrary distribution to reduce the effect of noise. Both methods are applicable to any dynamic thermal model to improve its prediction accuracy. Our experimental results show that the new methods indeed improve the prediction accuracy. |
doi_str_mv | 10.1109/THERMINIC49743.2020.9420535 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9420535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9420535</ieee_id><sourcerecordid>9420535</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1715-5205b7327ec9a9c5a93aa94438ac8ac5333ea5a2975ea0a269dcaa54988481ba3</originalsourceid><addsrcrecordid>eNotUFFrwjAYzAaDiesv2Etgz3VJvqRpHqXoLNNNhj7LZ_pty2irpHXgv19lwh33cMdxHGNPUkykFO55s5h9rMq3stDOapgoocTEaSUMmBuWOJtLqwZmGuwtGyltdSqNgnuWdN2PEEJmMoPcjdi2bI7x8BvaL76h5kgR-1Mkvo5UBd-HQ8un3p8i-jPfdpfUK9YNthzbiq8x9sHXxOeh7ile3BX134eqe2B3n1h3lFx1zLbz2aZYpMv3l7KYLtMgrTSpGQbvLShL3qHzBh0gOq0hRz_AAAChQeWsIRSoMld5RKNdnutc7hHG7PG_NxDR7hhDg_G8ux4Bf_wsVEo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods</title><source>IEEE Xplore All Conference Series</source><creator>Ozceylan, Baver ; Haverkort, Boudewijn R. ; de Graaf, Maurits ; Gerards, Marco E. T.</creator><creatorcontrib>Ozceylan, Baver ; Haverkort, Boudewijn R. ; de Graaf, Maurits ; Gerards, Marco E. T.</creatorcontrib><description>Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the workloads according to these predictions. This means that more accurate predictions can improve the reliability, lifetime and energy-efficiency of devices. We introduce two different generic methods to extend a thermal model to improve the prediction accuracy. The first method is to extend a thermal model with a Kalman filter. This approach enables a device to adapt to environmental changes more easily and to reduce the effect of noise by combining sensor data and dynamic behavior of the system. However, it assumes every random variable to be normally distributed. The second method is to extend a thermal model with a particle filter. In addition to the ability of adapting better to environmental changes, this approach enables a device to approximate any arbitrary distribution to reduce the effect of noise. Both methods are applicable to any dynamic thermal model to improve its prediction accuracy. Our experimental results show that the new methods indeed improve the prediction accuracy.</description><identifier>EISSN: 2474-1523</identifier><identifier>EISBN: 9781728176437</identifier><identifier>EISBN: 1728176433</identifier><identifier>DOI: 10.1109/THERMINIC49743.2020.9420535</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Filtering ; Particle filters ; Performance evaluation ; Predictive models ; Random variables ; Schedules</subject><ispartof>2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2020, p.37-42</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9420535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9420535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ozceylan, Baver</creatorcontrib><creatorcontrib>Haverkort, Boudewijn R.</creatorcontrib><creatorcontrib>de Graaf, Maurits</creatorcontrib><creatorcontrib>Gerards, Marco E. T.</creatorcontrib><title>Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods</title><title>2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)</title><addtitle>THERMINIC</addtitle><description>Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the workloads according to these predictions. This means that more accurate predictions can improve the reliability, lifetime and energy-efficiency of devices. We introduce two different generic methods to extend a thermal model to improve the prediction accuracy. The first method is to extend a thermal model with a Kalman filter. This approach enables a device to adapt to environmental changes more easily and to reduce the effect of noise by combining sensor data and dynamic behavior of the system. However, it assumes every random variable to be normally distributed. The second method is to extend a thermal model with a particle filter. In addition to the ability of adapting better to environmental changes, this approach enables a device to approximate any arbitrary distribution to reduce the effect of noise. Both methods are applicable to any dynamic thermal model to improve its prediction accuracy. Our experimental results show that the new methods indeed improve the prediction accuracy.</description><subject>Adaptation models</subject><subject>Filtering</subject><subject>Particle filters</subject><subject>Performance evaluation</subject><subject>Predictive models</subject><subject>Random variables</subject><subject>Schedules</subject><issn>2474-1523</issn><isbn>9781728176437</isbn><isbn>1728176433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUFFrwjAYzAaDiesv2Etgz3VJvqRpHqXoLNNNhj7LZ_pty2irpHXgv19lwh33cMdxHGNPUkykFO55s5h9rMq3stDOapgoocTEaSUMmBuWOJtLqwZmGuwtGyltdSqNgnuWdN2PEEJmMoPcjdi2bI7x8BvaL76h5kgR-1Mkvo5UBd-HQ8un3p8i-jPfdpfUK9YNthzbiq8x9sHXxOeh7ile3BX134eqe2B3n1h3lFx1zLbz2aZYpMv3l7KYLtMgrTSpGQbvLShL3qHzBh0gOq0hRz_AAAChQeWsIRSoMld5RKNdnutc7hHG7PG_NxDR7hhDg_G8ux4Bf_wsVEo</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Ozceylan, Baver</creator><creator>Haverkort, Boudewijn R.</creator><creator>de Graaf, Maurits</creator><creator>Gerards, Marco E. T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20200914</creationdate><title>Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods</title><author>Ozceylan, Baver ; Haverkort, Boudewijn R. ; de Graaf, Maurits ; Gerards, Marco E. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1715-5205b7327ec9a9c5a93aa94438ac8ac5333ea5a2975ea0a269dcaa54988481ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Filtering</topic><topic>Particle filters</topic><topic>Performance evaluation</topic><topic>Predictive models</topic><topic>Random variables</topic><topic>Schedules</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozceylan, Baver</creatorcontrib><creatorcontrib>Haverkort, Boudewijn R.</creatorcontrib><creatorcontrib>de Graaf, Maurits</creatorcontrib><creatorcontrib>Gerards, Marco E. T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozceylan, Baver</au><au>Haverkort, Boudewijn R.</au><au>de Graaf, Maurits</au><au>Gerards, Marco E. T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods</atitle><btitle>2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)</btitle><stitle>THERMINIC</stitle><date>2020-09-14</date><risdate>2020</risdate><spage>37</spage><epage>42</epage><pages>37-42</pages><eissn>2474-1523</eissn><eisbn>9781728176437</eisbn><eisbn>1728176433</eisbn><abstract>Predicting the device temperature is crucial for high performance mobile devices since a high temperature reduces the device reliability and lifetime, and increases the power dissipation per processing activity. For these reasons, thermal models are used to predict the temperature and schedule the workloads according to these predictions. This means that more accurate predictions can improve the reliability, lifetime and energy-efficiency of devices. We introduce two different generic methods to extend a thermal model to improve the prediction accuracy. The first method is to extend a thermal model with a Kalman filter. This approach enables a device to adapt to environmental changes more easily and to reduce the effect of noise by combining sensor data and dynamic behavior of the system. However, it assumes every random variable to be normally distributed. The second method is to extend a thermal model with a particle filter. In addition to the ability of adapting better to environmental changes, this approach enables a device to approximate any arbitrary distribution to reduce the effect of noise. Both methods are applicable to any dynamic thermal model to improve its prediction accuracy. Our experimental results show that the new methods indeed improve the prediction accuracy.</abstract><pub>IEEE</pub><doi>10.1109/THERMINIC49743.2020.9420535</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2474-1523 |
ispartof | 2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2020, p.37-42 |
issn | 2474-1523 |
language | eng |
recordid | cdi_ieee_primary_9420535 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Filtering Particle filters Performance evaluation Predictive models Random variables Schedules |
title | Improving Temperature Prediction Accuracy Using Kalman and Particle Filtering Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20Temperature%20Prediction%20Accuracy%20Using%20Kalman%20and%20Particle%20Filtering%20Methods&rft.btitle=2020%2026th%20International%20Workshop%20on%20Thermal%20Investigations%20of%20ICs%20and%20Systems%20(THERMINIC)&rft.au=Ozceylan,%20Baver&rft.date=2020-09-14&rft.spage=37&rft.epage=42&rft.pages=37-42&rft.eissn=2474-1523&rft_id=info:doi/10.1109/THERMINIC49743.2020.9420535&rft.eisbn=9781728176437&rft.eisbn_list=1728176433&rft_dat=%3Cieee_CHZPO%3E9420535%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1715-5205b7327ec9a9c5a93aa94438ac8ac5333ea5a2975ea0a269dcaa54988481ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9420535&rfr_iscdi=true |