Loading…
Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition
This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm a...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Vulpe-Grigorasi, Adrian Grigore, Ovidiu |
description | This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm applied on a search space defined by discrete values of hyperparameters. The best model resulted was trained and evaluated using FER2013 database, obtaining an accuracy of 72.16%. |
doi_str_mv | 10.1109/ATEE52255.2021.9425073 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9425073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9425073</ieee_id><sourcerecordid>9425073</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-3bc43242be5aa5e3c9093418b451ab6d27d30106a5e5a4b9dc922f68783abf5e3</originalsourceid><addsrcrecordid>eNotUF1Lw0AQPAXBWvsLBMkfSNz7TO6xhNQKRUEq-Fb2koucJrlwSZX6601rn2bZmVl2hpB7CgmloB-W26KQjEmZMGA00YJJSPkFuaFKSUGzNMsuyYxRqWOuQFyTxTB8AgDVWivFZ-Q99923b_aj8x020bPdhxOMPz58RetDb0OPAVs72jBEvh9d637xqI5qH6IVlm7SF60_rV5t6T86d5xvyVWNzWAXZ5yTt1Wxzdfx5uXxKV9uYseAjzE3peBMMGMlorS81KD59LgRkqJRFUsrDhTUxEkURlelZqxWUzCOpp4Mc3L3f9dZa3d9cC2Gw-5cBP8DaMFUew</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Vulpe-Grigorasi, Adrian ; Grigore, Ovidiu</creator><creatorcontrib>Vulpe-Grigorasi, Adrian ; Grigore, Ovidiu</creatorcontrib><description>This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm applied on a search space defined by discrete values of hyperparameters. The best model resulted was trained and evaluated using FER2013 database, obtaining an accuracy of 72.16%.</description><identifier>EISSN: 2159-3604</identifier><identifier>EISBN: 1665418788</identifier><identifier>EISBN: 9781665418782</identifier><identifier>DOI: 10.1109/ATEE52255.2021.9425073</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Convolutional neural networks ; Electrical engineering ; Emotion recognition ; facial emotion recognition ; FER2013 ; hyperparameter optimization ; Limiting ; Random Search ; Training</subject><ispartof>2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9425073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9425073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vulpe-Grigorasi, Adrian</creatorcontrib><creatorcontrib>Grigore, Ovidiu</creatorcontrib><title>Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition</title><title>2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE)</title><addtitle>ATEE</addtitle><description>This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm applied on a search space defined by discrete values of hyperparameters. The best model resulted was trained and evaluated using FER2013 database, obtaining an accuracy of 72.16%.</description><subject>Classification algorithms</subject><subject>Convolutional neural networks</subject><subject>Electrical engineering</subject><subject>Emotion recognition</subject><subject>facial emotion recognition</subject><subject>FER2013</subject><subject>hyperparameter optimization</subject><subject>Limiting</subject><subject>Random Search</subject><subject>Training</subject><issn>2159-3604</issn><isbn>1665418788</isbn><isbn>9781665418782</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUF1Lw0AQPAXBWvsLBMkfSNz7TO6xhNQKRUEq-Fb2koucJrlwSZX6601rn2bZmVl2hpB7CgmloB-W26KQjEmZMGA00YJJSPkFuaFKSUGzNMsuyYxRqWOuQFyTxTB8AgDVWivFZ-Q99923b_aj8x020bPdhxOMPz58RetDb0OPAVs72jBEvh9d637xqI5qH6IVlm7SF60_rV5t6T86d5xvyVWNzWAXZ5yTt1Wxzdfx5uXxKV9uYseAjzE3peBMMGMlorS81KD59LgRkqJRFUsrDhTUxEkURlelZqxWUzCOpp4Mc3L3f9dZa3d9cC2Gw-5cBP8DaMFUew</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Vulpe-Grigorasi, Adrian</creator><creator>Grigore, Ovidiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210325</creationdate><title>Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition</title><author>Vulpe-Grigorasi, Adrian ; Grigore, Ovidiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-3bc43242be5aa5e3c9093418b451ab6d27d30106a5e5a4b9dc922f68783abf5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification algorithms</topic><topic>Convolutional neural networks</topic><topic>Electrical engineering</topic><topic>Emotion recognition</topic><topic>facial emotion recognition</topic><topic>FER2013</topic><topic>hyperparameter optimization</topic><topic>Limiting</topic><topic>Random Search</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Vulpe-Grigorasi, Adrian</creatorcontrib><creatorcontrib>Grigore, Ovidiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vulpe-Grigorasi, Adrian</au><au>Grigore, Ovidiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition</atitle><btitle>2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE)</btitle><stitle>ATEE</stitle><date>2021-03-25</date><risdate>2021</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2159-3604</eissn><eisbn>1665418788</eisbn><eisbn>9781665418782</eisbn><abstract>This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm applied on a search space defined by discrete values of hyperparameters. The best model resulted was trained and evaluated using FER2013 database, obtaining an accuracy of 72.16%.</abstract><pub>IEEE</pub><doi>10.1109/ATEE52255.2021.9425073</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2159-3604 |
ispartof | 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021, p.1-5 |
issn | 2159-3604 |
language | eng |
recordid | cdi_ieee_primary_9425073 |
source | IEEE Xplore All Conference Series |
subjects | Classification algorithms Convolutional neural networks Electrical engineering Emotion recognition facial emotion recognition FER2013 hyperparameter optimization Limiting Random Search Training |
title | Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convolutional%20Neural%20Network%20Hyperparameters%20optimization%20for%20Facial%20Emotion%20Recognition&rft.btitle=2021%2012th%20International%20Symposium%20on%20Advanced%20Topics%20in%20Electrical%20Engineering%20(ATEE)&rft.au=Vulpe-Grigorasi,%20Adrian&rft.date=2021-03-25&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2159-3604&rft_id=info:doi/10.1109/ATEE52255.2021.9425073&rft.eisbn=1665418788&rft.eisbn_list=9781665418782&rft_dat=%3Cieee_CHZPO%3E9425073%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-3bc43242be5aa5e3c9093418b451ab6d27d30106a5e5a4b9dc922f68783abf5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9425073&rfr_iscdi=true |