Loading…

Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition

This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm a...

Full description

Saved in:
Bibliographic Details
Main Authors: Vulpe-Grigorasi, Adrian, Grigore, Ovidiu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Vulpe-Grigorasi, Adrian
Grigore, Ovidiu
description This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm applied on a search space defined by discrete values of hyperparameters. The best model resulted was trained and evaluated using FER2013 database, obtaining an accuracy of 72.16%.
doi_str_mv 10.1109/ATEE52255.2021.9425073
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9425073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9425073</ieee_id><sourcerecordid>9425073</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-3bc43242be5aa5e3c9093418b451ab6d27d30106a5e5a4b9dc922f68783abf5e3</originalsourceid><addsrcrecordid>eNotUF1Lw0AQPAXBWvsLBMkfSNz7TO6xhNQKRUEq-Fb2koucJrlwSZX6601rn2bZmVl2hpB7CgmloB-W26KQjEmZMGA00YJJSPkFuaFKSUGzNMsuyYxRqWOuQFyTxTB8AgDVWivFZ-Q99923b_aj8x020bPdhxOMPz58RetDb0OPAVs72jBEvh9d637xqI5qH6IVlm7SF60_rV5t6T86d5xvyVWNzWAXZ5yTt1Wxzdfx5uXxKV9uYseAjzE3peBMMGMlorS81KD59LgRkqJRFUsrDhTUxEkURlelZqxWUzCOpp4Mc3L3f9dZa3d9cC2Gw-5cBP8DaMFUew</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Vulpe-Grigorasi, Adrian ; Grigore, Ovidiu</creator><creatorcontrib>Vulpe-Grigorasi, Adrian ; Grigore, Ovidiu</creatorcontrib><description>This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm applied on a search space defined by discrete values of hyperparameters. The best model resulted was trained and evaluated using FER2013 database, obtaining an accuracy of 72.16%.</description><identifier>EISSN: 2159-3604</identifier><identifier>EISBN: 1665418788</identifier><identifier>EISBN: 9781665418782</identifier><identifier>DOI: 10.1109/ATEE52255.2021.9425073</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Convolutional neural networks ; Electrical engineering ; Emotion recognition ; facial emotion recognition ; FER2013 ; hyperparameter optimization ; Limiting ; Random Search ; Training</subject><ispartof>2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9425073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9425073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vulpe-Grigorasi, Adrian</creatorcontrib><creatorcontrib>Grigore, Ovidiu</creatorcontrib><title>Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition</title><title>2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE)</title><addtitle>ATEE</addtitle><description>This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm applied on a search space defined by discrete values of hyperparameters. The best model resulted was trained and evaluated using FER2013 database, obtaining an accuracy of 72.16%.</description><subject>Classification algorithms</subject><subject>Convolutional neural networks</subject><subject>Electrical engineering</subject><subject>Emotion recognition</subject><subject>facial emotion recognition</subject><subject>FER2013</subject><subject>hyperparameter optimization</subject><subject>Limiting</subject><subject>Random Search</subject><subject>Training</subject><issn>2159-3604</issn><isbn>1665418788</isbn><isbn>9781665418782</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUF1Lw0AQPAXBWvsLBMkfSNz7TO6xhNQKRUEq-Fb2koucJrlwSZX6601rn2bZmVl2hpB7CgmloB-W26KQjEmZMGA00YJJSPkFuaFKSUGzNMsuyYxRqWOuQFyTxTB8AgDVWivFZ-Q99923b_aj8x020bPdhxOMPz58RetDb0OPAVs72jBEvh9d637xqI5qH6IVlm7SF60_rV5t6T86d5xvyVWNzWAXZ5yTt1Wxzdfx5uXxKV9uYseAjzE3peBMMGMlorS81KD59LgRkqJRFUsrDhTUxEkURlelZqxWUzCOpp4Mc3L3f9dZa3d9cC2Gw-5cBP8DaMFUew</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Vulpe-Grigorasi, Adrian</creator><creator>Grigore, Ovidiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210325</creationdate><title>Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition</title><author>Vulpe-Grigorasi, Adrian ; Grigore, Ovidiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-3bc43242be5aa5e3c9093418b451ab6d27d30106a5e5a4b9dc922f68783abf5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification algorithms</topic><topic>Convolutional neural networks</topic><topic>Electrical engineering</topic><topic>Emotion recognition</topic><topic>facial emotion recognition</topic><topic>FER2013</topic><topic>hyperparameter optimization</topic><topic>Limiting</topic><topic>Random Search</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Vulpe-Grigorasi, Adrian</creatorcontrib><creatorcontrib>Grigore, Ovidiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vulpe-Grigorasi, Adrian</au><au>Grigore, Ovidiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition</atitle><btitle>2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE)</btitle><stitle>ATEE</stitle><date>2021-03-25</date><risdate>2021</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2159-3604</eissn><eisbn>1665418788</eisbn><eisbn>9781665418782</eisbn><abstract>This paper presents a method of optimizing the hyperparameters of a convolutional neural network in order to increase accuracy in the context of facial emotion recognition. The optimal hyperparameters of the network were determined by generating and training models based on Random Search algorithm applied on a search space defined by discrete values of hyperparameters. The best model resulted was trained and evaluated using FER2013 database, obtaining an accuracy of 72.16%.</abstract><pub>IEEE</pub><doi>10.1109/ATEE52255.2021.9425073</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2159-3604
ispartof 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021, p.1-5
issn 2159-3604
language eng
recordid cdi_ieee_primary_9425073
source IEEE Xplore All Conference Series
subjects Classification algorithms
Convolutional neural networks
Electrical engineering
Emotion recognition
facial emotion recognition
FER2013
hyperparameter optimization
Limiting
Random Search
Training
title Convolutional Neural Network Hyperparameters optimization for Facial Emotion Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convolutional%20Neural%20Network%20Hyperparameters%20optimization%20for%20Facial%20Emotion%20Recognition&rft.btitle=2021%2012th%20International%20Symposium%20on%20Advanced%20Topics%20in%20Electrical%20Engineering%20(ATEE)&rft.au=Vulpe-Grigorasi,%20Adrian&rft.date=2021-03-25&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2159-3604&rft_id=info:doi/10.1109/ATEE52255.2021.9425073&rft.eisbn=1665418788&rft.eisbn_list=9781665418782&rft_dat=%3Cieee_CHZPO%3E9425073%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-3bc43242be5aa5e3c9093418b451ab6d27d30106a5e5a4b9dc922f68783abf5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9425073&rfr_iscdi=true