Loading…

Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media

In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-bre...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2021-10, Vol.57 (10), p.1-6
Main Authors: Choi, Minyeong, Hong, Yang-Ki, Won, Hoyun, Mankey, Gary J., Yeo, Chang-Dong, Shah, Nayem M. R., Lee, Woncheol, Jung, Myung-Hwa, Thiele, Jan-Ulrich
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue 10
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 57
creator Choi, Minyeong
Hong, Yang-Ki
Won, Hoyun
Mankey, Gary J.
Yeo, Chang-Dong
Shah, Nayem M. R.
Lee, Woncheol
Jung, Myung-Hwa
Thiele, Jan-Ulrich
description In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-breaking layer, however, some other carbon atoms remain dissolved in the magnetic alloy. To identify the upper limit of carbon concentration in L 1_{0} -ordered (Fe 0.5 Pt 0.5 ) 100- x C x , first-principles calculations are performed based on the density functional theory (DFT). The Brillouin function and Callen-Callen empirical relation determine the temperature-dependent magnetization and magneto-crystalline anisotropy energy enabling the determination of magnetic properties and Curie temperature required by 4 Tb/in 2 heat-assisted magnetic recording (HAMR) media and beyond. The calculated magnetization ( M_{s} ) of L 1_{0} -ordered (Fe 0.5 Pt 0.5 ) 100- x C x decreases to 770 emu/cm 3 at x =20 from 1030 emu/cm 3 at x = 0 at 300 K, and the magnetocrystalline anisotropy constant ( K_{u} ) to 2.05 MJ/m 3 at x =20 from 15.48 MJ/m 3 at 300 K. It is striking to find that the Curie temperature ( T_{C} ) increases to 728 K at x =20 from 719 K at x =0 . Regardless of carbon concentration, the magnetic anisotropy direction is the out-of-plane. Combining M_{s} and K_{u} at 300 K with T_{C} , the M_{s} - K_{u} -
doi_str_mv 10.1109/TMAG.2021.3079188
format article
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9427554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9427554</ieee_id><sourcerecordid>9427554</sourcerecordid><originalsourceid>FETCH-ieee_primary_94275543</originalsourceid><addsrcrecordid>eNp9jEtOwzAURS0EEuGzAMTkbcCtnTptPKxS2g4agSCMKzd5iYyIHT170hliB2yFJbAUVkIGMGV0dXR0LmM3UkykFHpalcvNJBWpnMzEQss8P2GJ1EpyIeb6lCVCyJxrNVfn7CKElxFVJkXCPp6HAQl2trcRfAuFoYN3UHhXo4tkoh3JOlgjke9N5zDaGnby-_2N31ODhM3oHiIvoPUE1WFq3dcnrEw08BQ9mQ5hhS7YeIQtmsiXIdgQx6r8O3vE2lNjXQclNtZcsbPWvAa8_t1Ldru-q4ott4i4H8j2ho57rdJFlqnZ__YHdqdXUg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Choi, Minyeong ; Hong, Yang-Ki ; Won, Hoyun ; Mankey, Gary J. ; Yeo, Chang-Dong ; Shah, Nayem M. R. ; Lee, Woncheol ; Jung, Myung-Hwa ; Thiele, Jan-Ulrich</creator><creatorcontrib>Choi, Minyeong ; Hong, Yang-Ki ; Won, Hoyun ; Mankey, Gary J. ; Yeo, Chang-Dong ; Shah, Nayem M. R. ; Lee, Woncheol ; Jung, Myung-Hwa ; Thiele, Jan-Ulrich</creatorcontrib><description><![CDATA[In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-breaking layer, however, some other carbon atoms remain dissolved in the magnetic alloy. To identify the upper limit of carbon concentration in <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x , first-principles calculations are performed based on the density functional theory (DFT). The Brillouin function and Callen-Callen empirical relation determine the temperature-dependent magnetization and magneto-crystalline anisotropy energy enabling the determination of magnetic properties and Curie temperature required by 4 Tb/in 2 heat-assisted magnetic recording (HAMR) media and beyond. The calculated magnetization (<inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x decreases to 770 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 1030 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x = 0 </tex-math></inline-formula> at 300 K, and the magnetocrystalline anisotropy constant (<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>) to 2.05 MJ/m 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 15.48 MJ/m 3 at 300 K. It is striking to find that the Curie temperature (<inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>) increases to 728 K at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 719 K at <inline-formula> <tex-math notation="LaTeX">x =0 </tex-math></inline-formula>. Regardless of carbon concentration, the magnetic anisotropy direction is the out-of-plane. Combining <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula> at 300 K with <inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>-C concentration relation is plotted to guide the design of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered Fe-Pt film for Tb/in 2 recording media. It is found that the upper limit of carbon concentration is determined to be about 12 at.% to retain <inline-formula> <tex-math notation="LaTeX">M_{s} \ge800 </tex-math></inline-formula> emu/cm 3 , <inline-formula> <tex-math notation="LaTeX">T_{C} \ge430 </tex-math></inline-formula> K, and <inline-formula> <tex-math notation="LaTeX">K_{u} \ge 5 </tex-math></inline-formula> MJ/m 3 , which are necessary to achieve areal densities of 4 Tb/in 2 and beyond.]]></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2021.3079188</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brillouin function ; Carbon ; FePt-C ; first-principles calculation ; Heat-assisted magnetic recording ; heat-assisted magnetic recording (HAMR) ; Iron ; Magnetic properties ; Magnetic recording ; Media ; Perpendicular magnetic anisotropy</subject><ispartof>IEEE transactions on magnetics, 2021-10, Vol.57 (10), p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2462-2747 ; 0000-0003-3163-5159 ; 0000-0003-4629-7340 ; 0000-0001-8649-1960 ; 0000-0001-6489-2173 ; 0000-0003-3122-8078 ; 0000-0001-9088-7124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9427554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Choi, Minyeong</creatorcontrib><creatorcontrib>Hong, Yang-Ki</creatorcontrib><creatorcontrib>Won, Hoyun</creatorcontrib><creatorcontrib>Mankey, Gary J.</creatorcontrib><creatorcontrib>Yeo, Chang-Dong</creatorcontrib><creatorcontrib>Shah, Nayem M. R.</creatorcontrib><creatorcontrib>Lee, Woncheol</creatorcontrib><creatorcontrib>Jung, Myung-Hwa</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><title>Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description><![CDATA[In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-breaking layer, however, some other carbon atoms remain dissolved in the magnetic alloy. To identify the upper limit of carbon concentration in <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x , first-principles calculations are performed based on the density functional theory (DFT). The Brillouin function and Callen-Callen empirical relation determine the temperature-dependent magnetization and magneto-crystalline anisotropy energy enabling the determination of magnetic properties and Curie temperature required by 4 Tb/in 2 heat-assisted magnetic recording (HAMR) media and beyond. The calculated magnetization (<inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x decreases to 770 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 1030 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x = 0 </tex-math></inline-formula> at 300 K, and the magnetocrystalline anisotropy constant (<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>) to 2.05 MJ/m 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 15.48 MJ/m 3 at 300 K. It is striking to find that the Curie temperature (<inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>) increases to 728 K at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 719 K at <inline-formula> <tex-math notation="LaTeX">x =0 </tex-math></inline-formula>. Regardless of carbon concentration, the magnetic anisotropy direction is the out-of-plane. Combining <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula> at 300 K with <inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>-C concentration relation is plotted to guide the design of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered Fe-Pt film for Tb/in 2 recording media. It is found that the upper limit of carbon concentration is determined to be about 12 at.% to retain <inline-formula> <tex-math notation="LaTeX">M_{s} \ge800 </tex-math></inline-formula> emu/cm 3 , <inline-formula> <tex-math notation="LaTeX">T_{C} \ge430 </tex-math></inline-formula> K, and <inline-formula> <tex-math notation="LaTeX">K_{u} \ge 5 </tex-math></inline-formula> MJ/m 3 , which are necessary to achieve areal densities of 4 Tb/in 2 and beyond.]]></description><subject>Brillouin function</subject><subject>Carbon</subject><subject>FePt-C</subject><subject>first-principles calculation</subject><subject>Heat-assisted magnetic recording</subject><subject>heat-assisted magnetic recording (HAMR)</subject><subject>Iron</subject><subject>Magnetic properties</subject><subject>Magnetic recording</subject><subject>Media</subject><subject>Perpendicular magnetic anisotropy</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9jEtOwzAURS0EEuGzAMTkbcCtnTptPKxS2g4agSCMKzd5iYyIHT170hliB2yFJbAUVkIGMGV0dXR0LmM3UkykFHpalcvNJBWpnMzEQss8P2GJ1EpyIeb6lCVCyJxrNVfn7CKElxFVJkXCPp6HAQl2trcRfAuFoYN3UHhXo4tkoh3JOlgjke9N5zDaGnby-_2N31ODhM3oHiIvoPUE1WFq3dcnrEw08BQ9mQ5hhS7YeIQtmsiXIdgQx6r8O3vE2lNjXQclNtZcsbPWvAa8_t1Ldru-q4ott4i4H8j2ho57rdJFlqnZ__YHdqdXUg</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Choi, Minyeong</creator><creator>Hong, Yang-Ki</creator><creator>Won, Hoyun</creator><creator>Mankey, Gary J.</creator><creator>Yeo, Chang-Dong</creator><creator>Shah, Nayem M. R.</creator><creator>Lee, Woncheol</creator><creator>Jung, Myung-Hwa</creator><creator>Thiele, Jan-Ulrich</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-2462-2747</orcidid><orcidid>https://orcid.org/0000-0003-3163-5159</orcidid><orcidid>https://orcid.org/0000-0003-4629-7340</orcidid><orcidid>https://orcid.org/0000-0001-8649-1960</orcidid><orcidid>https://orcid.org/0000-0001-6489-2173</orcidid><orcidid>https://orcid.org/0000-0003-3122-8078</orcidid><orcidid>https://orcid.org/0000-0001-9088-7124</orcidid></search><sort><creationdate>202110</creationdate><title>Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media</title><author>Choi, Minyeong ; Hong, Yang-Ki ; Won, Hoyun ; Mankey, Gary J. ; Yeo, Chang-Dong ; Shah, Nayem M. R. ; Lee, Woncheol ; Jung, Myung-Hwa ; Thiele, Jan-Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_94275543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brillouin function</topic><topic>Carbon</topic><topic>FePt-C</topic><topic>first-principles calculation</topic><topic>Heat-assisted magnetic recording</topic><topic>heat-assisted magnetic recording (HAMR)</topic><topic>Iron</topic><topic>Magnetic properties</topic><topic>Magnetic recording</topic><topic>Media</topic><topic>Perpendicular magnetic anisotropy</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, Minyeong</creatorcontrib><creatorcontrib>Hong, Yang-Ki</creatorcontrib><creatorcontrib>Won, Hoyun</creatorcontrib><creatorcontrib>Mankey, Gary J.</creatorcontrib><creatorcontrib>Yeo, Chang-Dong</creatorcontrib><creatorcontrib>Shah, Nayem M. R.</creatorcontrib><creatorcontrib>Lee, Woncheol</creatorcontrib><creatorcontrib>Jung, Myung-Hwa</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Minyeong</au><au>Hong, Yang-Ki</au><au>Won, Hoyun</au><au>Mankey, Gary J.</au><au>Yeo, Chang-Dong</au><au>Shah, Nayem M. R.</au><au>Lee, Woncheol</au><au>Jung, Myung-Hwa</au><au>Thiele, Jan-Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2021-10</date><risdate>2021</risdate><volume>57</volume><issue>10</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract><![CDATA[In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-breaking layer, however, some other carbon atoms remain dissolved in the magnetic alloy. To identify the upper limit of carbon concentration in <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x , first-principles calculations are performed based on the density functional theory (DFT). The Brillouin function and Callen-Callen empirical relation determine the temperature-dependent magnetization and magneto-crystalline anisotropy energy enabling the determination of magnetic properties and Curie temperature required by 4 Tb/in 2 heat-assisted magnetic recording (HAMR) media and beyond. The calculated magnetization (<inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x decreases to 770 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 1030 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x = 0 </tex-math></inline-formula> at 300 K, and the magnetocrystalline anisotropy constant (<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>) to 2.05 MJ/m 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 15.48 MJ/m 3 at 300 K. It is striking to find that the Curie temperature (<inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>) increases to 728 K at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 719 K at <inline-formula> <tex-math notation="LaTeX">x =0 </tex-math></inline-formula>. Regardless of carbon concentration, the magnetic anisotropy direction is the out-of-plane. Combining <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula> at 300 K with <inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>-C concentration relation is plotted to guide the design of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered Fe-Pt film for Tb/in 2 recording media. It is found that the upper limit of carbon concentration is determined to be about 12 at.% to retain <inline-formula> <tex-math notation="LaTeX">M_{s} \ge800 </tex-math></inline-formula> emu/cm 3 , <inline-formula> <tex-math notation="LaTeX">T_{C} \ge430 </tex-math></inline-formula> K, and <inline-formula> <tex-math notation="LaTeX">K_{u} \ge 5 </tex-math></inline-formula> MJ/m 3 , which are necessary to achieve areal densities of 4 Tb/in 2 and beyond.]]></abstract><pub>IEEE</pub><doi>10.1109/TMAG.2021.3079188</doi><orcidid>https://orcid.org/0000-0003-2462-2747</orcidid><orcidid>https://orcid.org/0000-0003-3163-5159</orcidid><orcidid>https://orcid.org/0000-0003-4629-7340</orcidid><orcidid>https://orcid.org/0000-0001-8649-1960</orcidid><orcidid>https://orcid.org/0000-0001-6489-2173</orcidid><orcidid>https://orcid.org/0000-0003-3122-8078</orcidid><orcidid>https://orcid.org/0000-0001-9088-7124</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2021-10, Vol.57 (10), p.1-6
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_9427554
source IEEE Electronic Library (IEL) Journals
subjects Brillouin function
Carbon
FePt-C
first-principles calculation
Heat-assisted magnetic recording
heat-assisted magnetic recording (HAMR)
Iron
Magnetic properties
Magnetic recording
Media
Perpendicular magnetic anisotropy
title Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Limit%20of%20Carbon%20Concentration%20in%20Ferromagnetic%20L1%E2%82%80-Ordered%20FePt-C%20for%20Tb/in%C2%B2%20Data%20Storage%20Density%20Heat-Assisted%20Magnetic%20Recording%20Media&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Choi,%20Minyeong&rft.date=2021-10&rft.volume=57&rft.issue=10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2021.3079188&rft_dat=%3Cieee%3E9427554%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_94275543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9427554&rfr_iscdi=true