Loading…
Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media
In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-bre...
Saved in:
Published in: | IEEE transactions on magnetics 2021-10, Vol.57 (10), p.1-6 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 57 |
creator | Choi, Minyeong Hong, Yang-Ki Won, Hoyun Mankey, Gary J. Yeo, Chang-Dong Shah, Nayem M. R. Lee, Woncheol Jung, Myung-Hwa Thiele, Jan-Ulrich |
description | In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-breaking layer, however, some other carbon atoms remain dissolved in the magnetic alloy. To identify the upper limit of carbon concentration in L 1_{0} -ordered (Fe 0.5 Pt 0.5 ) 100- x C x , first-principles calculations are performed based on the density functional theory (DFT). The Brillouin function and Callen-Callen empirical relation determine the temperature-dependent magnetization and magneto-crystalline anisotropy energy enabling the determination of magnetic properties and Curie temperature required by 4 Tb/in 2 heat-assisted magnetic recording (HAMR) media and beyond. The calculated magnetization ( M_{s} ) of L 1_{0} -ordered (Fe 0.5 Pt 0.5 ) 100- x C x decreases to 770 emu/cm 3 at x =20 from 1030 emu/cm 3 at x = 0 at 300 K, and the magnetocrystalline anisotropy constant ( K_{u} ) to 2.05 MJ/m 3 at x =20 from 15.48 MJ/m 3 at 300 K. It is striking to find that the Curie temperature ( T_{C} ) increases to 728 K at x =20 from 719 K at x =0 . Regardless of carbon concentration, the magnetic anisotropy direction is the out-of-plane. Combining M_{s} and K_{u} at 300 K with T_{C} , the M_{s} - K_{u} - |
doi_str_mv | 10.1109/TMAG.2021.3079188 |
format | article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9427554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9427554</ieee_id><sourcerecordid>9427554</sourcerecordid><originalsourceid>FETCH-ieee_primary_94275543</originalsourceid><addsrcrecordid>eNp9jEtOwzAURS0EEuGzAMTkbcCtnTptPKxS2g4agSCMKzd5iYyIHT170hliB2yFJbAUVkIGMGV0dXR0LmM3UkykFHpalcvNJBWpnMzEQss8P2GJ1EpyIeb6lCVCyJxrNVfn7CKElxFVJkXCPp6HAQl2trcRfAuFoYN3UHhXo4tkoh3JOlgjke9N5zDaGnby-_2N31ODhM3oHiIvoPUE1WFq3dcnrEw08BQ9mQ5hhS7YeIQtmsiXIdgQx6r8O3vE2lNjXQclNtZcsbPWvAa8_t1Ldru-q4ott4i4H8j2ho57rdJFlqnZ__YHdqdXUg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Choi, Minyeong ; Hong, Yang-Ki ; Won, Hoyun ; Mankey, Gary J. ; Yeo, Chang-Dong ; Shah, Nayem M. R. ; Lee, Woncheol ; Jung, Myung-Hwa ; Thiele, Jan-Ulrich</creator><creatorcontrib>Choi, Minyeong ; Hong, Yang-Ki ; Won, Hoyun ; Mankey, Gary J. ; Yeo, Chang-Dong ; Shah, Nayem M. R. ; Lee, Woncheol ; Jung, Myung-Hwa ; Thiele, Jan-Ulrich</creatorcontrib><description><![CDATA[In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-breaking layer, however, some other carbon atoms remain dissolved in the magnetic alloy. To identify the upper limit of carbon concentration in <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x , first-principles calculations are performed based on the density functional theory (DFT). The Brillouin function and Callen-Callen empirical relation determine the temperature-dependent magnetization and magneto-crystalline anisotropy energy enabling the determination of magnetic properties and Curie temperature required by 4 Tb/in 2 heat-assisted magnetic recording (HAMR) media and beyond. The calculated magnetization (<inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x decreases to 770 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 1030 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x = 0 </tex-math></inline-formula> at 300 K, and the magnetocrystalline anisotropy constant (<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>) to 2.05 MJ/m 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 15.48 MJ/m 3 at 300 K. It is striking to find that the Curie temperature (<inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>) increases to 728 K at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 719 K at <inline-formula> <tex-math notation="LaTeX">x =0 </tex-math></inline-formula>. Regardless of carbon concentration, the magnetic anisotropy direction is the out-of-plane. Combining <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula> at 300 K with <inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>-C concentration relation is plotted to guide the design of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered Fe-Pt film for Tb/in 2 recording media. It is found that the upper limit of carbon concentration is determined to be about 12 at.% to retain <inline-formula> <tex-math notation="LaTeX">M_{s} \ge800 </tex-math></inline-formula> emu/cm 3 , <inline-formula> <tex-math notation="LaTeX">T_{C} \ge430 </tex-math></inline-formula> K, and <inline-formula> <tex-math notation="LaTeX">K_{u} \ge 5 </tex-math></inline-formula> MJ/m 3 , which are necessary to achieve areal densities of 4 Tb/in 2 and beyond.]]></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2021.3079188</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brillouin function ; Carbon ; FePt-C ; first-principles calculation ; Heat-assisted magnetic recording ; heat-assisted magnetic recording (HAMR) ; Iron ; Magnetic properties ; Magnetic recording ; Media ; Perpendicular magnetic anisotropy</subject><ispartof>IEEE transactions on magnetics, 2021-10, Vol.57 (10), p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2462-2747 ; 0000-0003-3163-5159 ; 0000-0003-4629-7340 ; 0000-0001-8649-1960 ; 0000-0001-6489-2173 ; 0000-0003-3122-8078 ; 0000-0001-9088-7124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9427554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Choi, Minyeong</creatorcontrib><creatorcontrib>Hong, Yang-Ki</creatorcontrib><creatorcontrib>Won, Hoyun</creatorcontrib><creatorcontrib>Mankey, Gary J.</creatorcontrib><creatorcontrib>Yeo, Chang-Dong</creatorcontrib><creatorcontrib>Shah, Nayem M. R.</creatorcontrib><creatorcontrib>Lee, Woncheol</creatorcontrib><creatorcontrib>Jung, Myung-Hwa</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><title>Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description><![CDATA[In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-breaking layer, however, some other carbon atoms remain dissolved in the magnetic alloy. To identify the upper limit of carbon concentration in <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x , first-principles calculations are performed based on the density functional theory (DFT). The Brillouin function and Callen-Callen empirical relation determine the temperature-dependent magnetization and magneto-crystalline anisotropy energy enabling the determination of magnetic properties and Curie temperature required by 4 Tb/in 2 heat-assisted magnetic recording (HAMR) media and beyond. The calculated magnetization (<inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x decreases to 770 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 1030 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x = 0 </tex-math></inline-formula> at 300 K, and the magnetocrystalline anisotropy constant (<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>) to 2.05 MJ/m 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 15.48 MJ/m 3 at 300 K. It is striking to find that the Curie temperature (<inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>) increases to 728 K at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 719 K at <inline-formula> <tex-math notation="LaTeX">x =0 </tex-math></inline-formula>. Regardless of carbon concentration, the magnetic anisotropy direction is the out-of-plane. Combining <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula> at 300 K with <inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>-C concentration relation is plotted to guide the design of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered Fe-Pt film for Tb/in 2 recording media. It is found that the upper limit of carbon concentration is determined to be about 12 at.% to retain <inline-formula> <tex-math notation="LaTeX">M_{s} \ge800 </tex-math></inline-formula> emu/cm 3 , <inline-formula> <tex-math notation="LaTeX">T_{C} \ge430 </tex-math></inline-formula> K, and <inline-formula> <tex-math notation="LaTeX">K_{u} \ge 5 </tex-math></inline-formula> MJ/m 3 , which are necessary to achieve areal densities of 4 Tb/in 2 and beyond.]]></description><subject>Brillouin function</subject><subject>Carbon</subject><subject>FePt-C</subject><subject>first-principles calculation</subject><subject>Heat-assisted magnetic recording</subject><subject>heat-assisted magnetic recording (HAMR)</subject><subject>Iron</subject><subject>Magnetic properties</subject><subject>Magnetic recording</subject><subject>Media</subject><subject>Perpendicular magnetic anisotropy</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9jEtOwzAURS0EEuGzAMTkbcCtnTptPKxS2g4agSCMKzd5iYyIHT170hliB2yFJbAUVkIGMGV0dXR0LmM3UkykFHpalcvNJBWpnMzEQss8P2GJ1EpyIeb6lCVCyJxrNVfn7CKElxFVJkXCPp6HAQl2trcRfAuFoYN3UHhXo4tkoh3JOlgjke9N5zDaGnby-_2N31ODhM3oHiIvoPUE1WFq3dcnrEw08BQ9mQ5hhS7YeIQtmsiXIdgQx6r8O3vE2lNjXQclNtZcsbPWvAa8_t1Ldru-q4ott4i4H8j2ho57rdJFlqnZ__YHdqdXUg</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Choi, Minyeong</creator><creator>Hong, Yang-Ki</creator><creator>Won, Hoyun</creator><creator>Mankey, Gary J.</creator><creator>Yeo, Chang-Dong</creator><creator>Shah, Nayem M. R.</creator><creator>Lee, Woncheol</creator><creator>Jung, Myung-Hwa</creator><creator>Thiele, Jan-Ulrich</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-2462-2747</orcidid><orcidid>https://orcid.org/0000-0003-3163-5159</orcidid><orcidid>https://orcid.org/0000-0003-4629-7340</orcidid><orcidid>https://orcid.org/0000-0001-8649-1960</orcidid><orcidid>https://orcid.org/0000-0001-6489-2173</orcidid><orcidid>https://orcid.org/0000-0003-3122-8078</orcidid><orcidid>https://orcid.org/0000-0001-9088-7124</orcidid></search><sort><creationdate>202110</creationdate><title>Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media</title><author>Choi, Minyeong ; Hong, Yang-Ki ; Won, Hoyun ; Mankey, Gary J. ; Yeo, Chang-Dong ; Shah, Nayem M. R. ; Lee, Woncheol ; Jung, Myung-Hwa ; Thiele, Jan-Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_94275543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brillouin function</topic><topic>Carbon</topic><topic>FePt-C</topic><topic>first-principles calculation</topic><topic>Heat-assisted magnetic recording</topic><topic>heat-assisted magnetic recording (HAMR)</topic><topic>Iron</topic><topic>Magnetic properties</topic><topic>Magnetic recording</topic><topic>Media</topic><topic>Perpendicular magnetic anisotropy</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, Minyeong</creatorcontrib><creatorcontrib>Hong, Yang-Ki</creatorcontrib><creatorcontrib>Won, Hoyun</creatorcontrib><creatorcontrib>Mankey, Gary J.</creatorcontrib><creatorcontrib>Yeo, Chang-Dong</creatorcontrib><creatorcontrib>Shah, Nayem M. R.</creatorcontrib><creatorcontrib>Lee, Woncheol</creatorcontrib><creatorcontrib>Jung, Myung-Hwa</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Minyeong</au><au>Hong, Yang-Ki</au><au>Won, Hoyun</au><au>Mankey, Gary J.</au><au>Yeo, Chang-Dong</au><au>Shah, Nayem M. R.</au><au>Lee, Woncheol</au><au>Jung, Myung-Hwa</au><au>Thiele, Jan-Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2021-10</date><risdate>2021</risdate><volume>57</volume><issue>10</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract><![CDATA[In high-density magnetic recording media, magnetically isolated grains are required to increase the signal-to-noise ratio (SNR). Carbon can be used to isolate FePt grains enabling their grain size smaller than 4.3 nm. Carbon atoms segregate to the boundaries during growth and provide an exchange-breaking layer, however, some other carbon atoms remain dissolved in the magnetic alloy. To identify the upper limit of carbon concentration in <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x , first-principles calculations are performed based on the density functional theory (DFT). The Brillouin function and Callen-Callen empirical relation determine the temperature-dependent magnetization and magneto-crystalline anisotropy energy enabling the determination of magnetic properties and Curie temperature required by 4 Tb/in 2 heat-assisted magnetic recording (HAMR) media and beyond. The calculated magnetization (<inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered (Fe 0.5 Pt 0.5 ) 100- x C x decreases to 770 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 1030 emu/cm 3 at <inline-formula> <tex-math notation="LaTeX">x = 0 </tex-math></inline-formula> at 300 K, and the magnetocrystalline anisotropy constant (<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>) to 2.05 MJ/m 3 at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 15.48 MJ/m 3 at 300 K. It is striking to find that the Curie temperature (<inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>) increases to 728 K at <inline-formula> <tex-math notation="LaTeX">x =20 </tex-math></inline-formula> from 719 K at <inline-formula> <tex-math notation="LaTeX">x =0 </tex-math></inline-formula>. Regardless of carbon concentration, the magnetic anisotropy direction is the out-of-plane. Combining <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula> at 300 K with <inline-formula> <tex-math notation="LaTeX">T_{C} </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">K_{u} </tex-math></inline-formula>-C concentration relation is plotted to guide the design of <inline-formula> <tex-math notation="LaTeX">L 1_{0} </tex-math></inline-formula>-ordered Fe-Pt film for Tb/in 2 recording media. It is found that the upper limit of carbon concentration is determined to be about 12 at.% to retain <inline-formula> <tex-math notation="LaTeX">M_{s} \ge800 </tex-math></inline-formula> emu/cm 3 , <inline-formula> <tex-math notation="LaTeX">T_{C} \ge430 </tex-math></inline-formula> K, and <inline-formula> <tex-math notation="LaTeX">K_{u} \ge 5 </tex-math></inline-formula> MJ/m 3 , which are necessary to achieve areal densities of 4 Tb/in 2 and beyond.]]></abstract><pub>IEEE</pub><doi>10.1109/TMAG.2021.3079188</doi><orcidid>https://orcid.org/0000-0003-2462-2747</orcidid><orcidid>https://orcid.org/0000-0003-3163-5159</orcidid><orcidid>https://orcid.org/0000-0003-4629-7340</orcidid><orcidid>https://orcid.org/0000-0001-8649-1960</orcidid><orcidid>https://orcid.org/0000-0001-6489-2173</orcidid><orcidid>https://orcid.org/0000-0003-3122-8078</orcidid><orcidid>https://orcid.org/0000-0001-9088-7124</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2021-10, Vol.57 (10), p.1-6 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_9427554 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Brillouin function Carbon FePt-C first-principles calculation Heat-assisted magnetic recording heat-assisted magnetic recording (HAMR) Iron Magnetic properties Magnetic recording Media Perpendicular magnetic anisotropy |
title | Upper Limit of Carbon Concentration in Ferromagnetic L1₀-Ordered FePt-C for Tb/in² Data Storage Density Heat-Assisted Magnetic Recording Media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Limit%20of%20Carbon%20Concentration%20in%20Ferromagnetic%20L1%E2%82%80-Ordered%20FePt-C%20for%20Tb/in%C2%B2%20Data%20Storage%20Density%20Heat-Assisted%20Magnetic%20Recording%20Media&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Choi,%20Minyeong&rft.date=2021-10&rft.volume=57&rft.issue=10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2021.3079188&rft_dat=%3Cieee%3E9427554%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_94275543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9427554&rfr_iscdi=true |