Loading…
A Novel Attention Enhanced Residual-In-Residual Dense Network for Text Image Super-Resolution
Natural scene text images captured by handheld devices usually cause low resolution (LR) problems, thus making sub-sequent detection and recognition tasks more challenging. To address this problem, LR text images are generally super-resolution (SR) processed first. In this paper, we propose a novel...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Xue, Minglong Huang, Zhiheng Liu, Ruo-ze Lu, Tong |
description | Natural scene text images captured by handheld devices usually cause low resolution (LR) problems, thus making sub-sequent detection and recognition tasks more challenging. To address this problem, LR text images are generally super-resolution (SR) processed first. In this paper, we propose a novel low-resolution text image super-resolution method. This method adopts the residual-in-residual dense network (RRDN) to extract deeper high-frequency features than the residual dense network (RDN). Then, enhances the spatial and channel features with an attention mechanism. According to the characteristics of the text, we added gradient loss to adversarial learning. Experiments show that our method performs well in both qualitative and quantitative aspects of the latest public text image super-resolution dataset. Similarly, the proposed super-resolution method for text images of natural scenes also achieves the latest results. |
doi_str_mv | 10.1109/ICME51207.2021.9428128 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9428128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9428128</ieee_id><sourcerecordid>9428128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i485-ec0b7808d75010bacf8db84bf859f7241e48bf45c9b603a1623d9421339ee8d13</originalsourceid><addsrcrecordid>eNo1kN1Kw0AUhFdBsNQ-gSD7Aol79id79rLEagO1gvbCGym7yYlG06QkqT9vb4t1bmYuhg9mGLsCEQMId52l9zMDUthYCgmx0xJB4gmbOIuQJEYrTLQ6ZSNw2kQW8fmcTfr-XexltXZCjdjLlC_bT6r5dBioGaq24bPmzTc5FfyR-qrY-TrKmug_8xtqeuJLGr7a7oOXbcdX9D3wbONfiT_tttQdum29O7Au2Fnp654mRx-z1e1slc6jxcNdlk4XUaXRRJSLYFFgYY0AEXxeYhFQhxKNK63UQBpDqU3uQiKUh0SqYj8WlHJEWIAas8s_bEVE621XbXz3sz7-oX4BY85Urw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Attention Enhanced Residual-In-Residual Dense Network for Text Image Super-Resolution</title><source>IEEE Xplore All Conference Series</source><creator>Xue, Minglong ; Huang, Zhiheng ; Liu, Ruo-ze ; Lu, Tong</creator><creatorcontrib>Xue, Minglong ; Huang, Zhiheng ; Liu, Ruo-ze ; Lu, Tong</creatorcontrib><description>Natural scene text images captured by handheld devices usually cause low resolution (LR) problems, thus making sub-sequent detection and recognition tasks more challenging. To address this problem, LR text images are generally super-resolution (SR) processed first. In this paper, we propose a novel low-resolution text image super-resolution method. This method adopts the residual-in-residual dense network (RRDN) to extract deeper high-frequency features than the residual dense network (RDN). Then, enhances the spatial and channel features with an attention mechanism. According to the characteristics of the text, we added gradient loss to adversarial learning. Experiments show that our method performs well in both qualitative and quantitative aspects of the latest public text image super-resolution dataset. Similarly, the proposed super-resolution method for text images of natural scenes also achieves the latest results.</description><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 9781665438643</identifier><identifier>EISBN: 1665438649</identifier><identifier>DOI: 10.1109/ICME51207.2021.9428128</identifier><language>eng</language><publisher>IEEE</publisher><subject>attention ; Conferences ; Feature extraction ; GAN ; Handheld computers ; Image edge detection ; Image quality ; Super-resolution ; Superresolution ; text image ; Text recognition</subject><ispartof>2021 IEEE International Conference on Multimedia and Expo (ICME), 2021, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9428128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9428128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Minglong</creatorcontrib><creatorcontrib>Huang, Zhiheng</creatorcontrib><creatorcontrib>Liu, Ruo-ze</creatorcontrib><creatorcontrib>Lu, Tong</creatorcontrib><title>A Novel Attention Enhanced Residual-In-Residual Dense Network for Text Image Super-Resolution</title><title>2021 IEEE International Conference on Multimedia and Expo (ICME)</title><addtitle>ICME</addtitle><description>Natural scene text images captured by handheld devices usually cause low resolution (LR) problems, thus making sub-sequent detection and recognition tasks more challenging. To address this problem, LR text images are generally super-resolution (SR) processed first. In this paper, we propose a novel low-resolution text image super-resolution method. This method adopts the residual-in-residual dense network (RRDN) to extract deeper high-frequency features than the residual dense network (RDN). Then, enhances the spatial and channel features with an attention mechanism. According to the characteristics of the text, we added gradient loss to adversarial learning. Experiments show that our method performs well in both qualitative and quantitative aspects of the latest public text image super-resolution dataset. Similarly, the proposed super-resolution method for text images of natural scenes also achieves the latest results.</description><subject>attention</subject><subject>Conferences</subject><subject>Feature extraction</subject><subject>GAN</subject><subject>Handheld computers</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Super-resolution</subject><subject>Superresolution</subject><subject>text image</subject><subject>Text recognition</subject><issn>1945-788X</issn><isbn>9781665438643</isbn><isbn>1665438649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AUhFdBsNQ-gSD7Aol79id79rLEagO1gvbCGym7yYlG06QkqT9vb4t1bmYuhg9mGLsCEQMId52l9zMDUthYCgmx0xJB4gmbOIuQJEYrTLQ6ZSNw2kQW8fmcTfr-XexltXZCjdjLlC_bT6r5dBioGaq24bPmzTc5FfyR-qrY-TrKmug_8xtqeuJLGr7a7oOXbcdX9D3wbONfiT_tttQdum29O7Au2Fnp654mRx-z1e1slc6jxcNdlk4XUaXRRJSLYFFgYY0AEXxeYhFQhxKNK63UQBpDqU3uQiKUh0SqYj8WlHJEWIAas8s_bEVE621XbXz3sz7-oX4BY85Urw</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Xue, Minglong</creator><creator>Huang, Zhiheng</creator><creator>Liu, Ruo-ze</creator><creator>Lu, Tong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210705</creationdate><title>A Novel Attention Enhanced Residual-In-Residual Dense Network for Text Image Super-Resolution</title><author>Xue, Minglong ; Huang, Zhiheng ; Liu, Ruo-ze ; Lu, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i485-ec0b7808d75010bacf8db84bf859f7241e48bf45c9b603a1623d9421339ee8d13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>attention</topic><topic>Conferences</topic><topic>Feature extraction</topic><topic>GAN</topic><topic>Handheld computers</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Super-resolution</topic><topic>Superresolution</topic><topic>text image</topic><topic>Text recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Xue, Minglong</creatorcontrib><creatorcontrib>Huang, Zhiheng</creatorcontrib><creatorcontrib>Liu, Ruo-ze</creatorcontrib><creatorcontrib>Lu, Tong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Minglong</au><au>Huang, Zhiheng</au><au>Liu, Ruo-ze</au><au>Lu, Tong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Attention Enhanced Residual-In-Residual Dense Network for Text Image Super-Resolution</atitle><btitle>2021 IEEE International Conference on Multimedia and Expo (ICME)</btitle><stitle>ICME</stitle><date>2021-07-05</date><risdate>2021</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1945-788X</eissn><eisbn>9781665438643</eisbn><eisbn>1665438649</eisbn><abstract>Natural scene text images captured by handheld devices usually cause low resolution (LR) problems, thus making sub-sequent detection and recognition tasks more challenging. To address this problem, LR text images are generally super-resolution (SR) processed first. In this paper, we propose a novel low-resolution text image super-resolution method. This method adopts the residual-in-residual dense network (RRDN) to extract deeper high-frequency features than the residual dense network (RDN). Then, enhances the spatial and channel features with an attention mechanism. According to the characteristics of the text, we added gradient loss to adversarial learning. Experiments show that our method performs well in both qualitative and quantitative aspects of the latest public text image super-resolution dataset. Similarly, the proposed super-resolution method for text images of natural scenes also achieves the latest results.</abstract><pub>IEEE</pub><doi>10.1109/ICME51207.2021.9428128</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-788X |
ispartof | 2021 IEEE International Conference on Multimedia and Expo (ICME), 2021, p.1-6 |
issn | 1945-788X |
language | eng |
recordid | cdi_ieee_primary_9428128 |
source | IEEE Xplore All Conference Series |
subjects | attention Conferences Feature extraction GAN Handheld computers Image edge detection Image quality Super-resolution Superresolution text image Text recognition |
title | A Novel Attention Enhanced Residual-In-Residual Dense Network for Text Image Super-Resolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Attention%20Enhanced%20Residual-In-Residual%20Dense%20Network%20for%20Text%20Image%20Super-Resolution&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo%20(ICME)&rft.au=Xue,%20Minglong&rft.date=2021-07-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1945-788X&rft_id=info:doi/10.1109/ICME51207.2021.9428128&rft.eisbn=9781665438643&rft.eisbn_list=1665438649&rft_dat=%3Cieee_CHZPO%3E9428128%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i485-ec0b7808d75010bacf8db84bf859f7241e48bf45c9b603a1623d9421339ee8d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9428128&rfr_iscdi=true |