Loading…

Improvement of a speaker authentication system through MLP's post-processing

Speaker verification and utterance verification are examples of techniques that can be used for speaker authentication purposes. Speaker verification consists of accepting or rejecting the claimed identity of a speaker by processing samples of his/her voice. Usually, these systems are based on HMM m...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodriguez-Linares, L., Garcia-Mateo, C., Alba-Castro, J.L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 470
container_issue
container_start_page 461
container_title
container_volume
creator Rodriguez-Linares, L.
Garcia-Mateo, C.
Alba-Castro, J.L.
description Speaker verification and utterance verification are examples of techniques that can be used for speaker authentication purposes. Speaker verification consists of accepting or rejecting the claimed identity of a speaker by processing samples of his/her voice. Usually, these systems are based on HMM models that try to represent the characteristics of the talkers' vocal tracts. Utterance verification systems make use of a set of speaker-independent speech models to recognize a certain utterance. If the utterances consist of passwords, this can be used for identity verification purposes. Up to now, both techniques have been used separately. In this paper, we show that combining these two sources of information using neural networks outperforms both the individual classifiers and other proposed methods for combination.
doi_str_mv 10.1109/NNSP.2001.943150
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_943150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>943150</ieee_id><sourcerecordid>943150</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-a76a8e25065d7d648eadf5782253d19ef68d037602e765154deaaabe969c22a03</originalsourceid><addsrcrecordid>eNotkMtLxDAYxIMPcF33Lp5y89T6JWmS5iiLj4W6Lqjn5bP9uo3aB01W2P_ewgoDAwO_YRjGrgWkQoC7W6_fNqkEEKnLlNBwwmZSWZdIJd0pWzibwyRlhTP6jM0E5C5RWusLdhnCF4AEac2MFat2GPtfaqmLvK858jAQftPIcR-bKfQlRt93PBxCpJbHZuz3u4a_FJvbwIc-xGTiSwrBd7srdl7jT6DFv8_Zx-PD-_I5KV6fVsv7IvECspigNZiT1GB0ZSuT5YRVrW0upVaVcFSbvJqWG5BkjRY6qwgRP8kZV0qJoObs5tjriWg7jL7F8bA9_qD-AAPlT8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improvement of a speaker authentication system through MLP's post-processing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rodriguez-Linares, L. ; Garcia-Mateo, C. ; Alba-Castro, J.L.</creator><creatorcontrib>Rodriguez-Linares, L. ; Garcia-Mateo, C. ; Alba-Castro, J.L.</creatorcontrib><description>Speaker verification and utterance verification are examples of techniques that can be used for speaker authentication purposes. Speaker verification consists of accepting or rejecting the claimed identity of a speaker by processing samples of his/her voice. Usually, these systems are based on HMM models that try to represent the characteristics of the talkers' vocal tracts. Utterance verification systems make use of a set of speaker-independent speech models to recognize a certain utterance. If the utterances consist of passwords, this can be used for identity verification purposes. Up to now, both techniques have been used separately. In this paper, we show that combining these two sources of information using neural networks outperforms both the individual classifiers and other proposed methods for combination.</description><identifier>ISSN: 1089-3555</identifier><identifier>ISBN: 9780780371965</identifier><identifier>ISBN: 0780371968</identifier><identifier>EISSN: 2379-2329</identifier><identifier>DOI: 10.1109/NNSP.2001.943150</identifier><language>eng</language><publisher>IEEE</publisher><subject>Authentication</subject><ispartof>Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop (IEEE Cat. No.01TH8584), 2001, p.461-470</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/943150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/943150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rodriguez-Linares, L.</creatorcontrib><creatorcontrib>Garcia-Mateo, C.</creatorcontrib><creatorcontrib>Alba-Castro, J.L.</creatorcontrib><title>Improvement of a speaker authentication system through MLP's post-processing</title><title>Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop (IEEE Cat. No.01TH8584)</title><addtitle>NNSP</addtitle><description>Speaker verification and utterance verification are examples of techniques that can be used for speaker authentication purposes. Speaker verification consists of accepting or rejecting the claimed identity of a speaker by processing samples of his/her voice. Usually, these systems are based on HMM models that try to represent the characteristics of the talkers' vocal tracts. Utterance verification systems make use of a set of speaker-independent speech models to recognize a certain utterance. If the utterances consist of passwords, this can be used for identity verification purposes. Up to now, both techniques have been used separately. In this paper, we show that combining these two sources of information using neural networks outperforms both the individual classifiers and other proposed methods for combination.</description><subject>Authentication</subject><issn>1089-3555</issn><issn>2379-2329</issn><isbn>9780780371965</isbn><isbn>0780371968</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtLxDAYxIMPcF33Lp5y89T6JWmS5iiLj4W6Lqjn5bP9uo3aB01W2P_ewgoDAwO_YRjGrgWkQoC7W6_fNqkEEKnLlNBwwmZSWZdIJd0pWzibwyRlhTP6jM0E5C5RWusLdhnCF4AEac2MFat2GPtfaqmLvK858jAQftPIcR-bKfQlRt93PBxCpJbHZuz3u4a_FJvbwIc-xGTiSwrBd7srdl7jT6DFv8_Zx-PD-_I5KV6fVsv7IvECspigNZiT1GB0ZSuT5YRVrW0upVaVcFSbvJqWG5BkjRY6qwgRP8kZV0qJoObs5tjriWg7jL7F8bA9_qD-AAPlT8g</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Rodriguez-Linares, L.</creator><creator>Garcia-Mateo, C.</creator><creator>Alba-Castro, J.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>Improvement of a speaker authentication system through MLP's post-processing</title><author>Rodriguez-Linares, L. ; Garcia-Mateo, C. ; Alba-Castro, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-a76a8e25065d7d648eadf5782253d19ef68d037602e765154deaaabe969c22a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Authentication</topic><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez-Linares, L.</creatorcontrib><creatorcontrib>Garcia-Mateo, C.</creatorcontrib><creatorcontrib>Alba-Castro, J.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodriguez-Linares, L.</au><au>Garcia-Mateo, C.</au><au>Alba-Castro, J.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improvement of a speaker authentication system through MLP's post-processing</atitle><btitle>Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop (IEEE Cat. No.01TH8584)</btitle><stitle>NNSP</stitle><date>2001</date><risdate>2001</risdate><spage>461</spage><epage>470</epage><pages>461-470</pages><issn>1089-3555</issn><eissn>2379-2329</eissn><isbn>9780780371965</isbn><isbn>0780371968</isbn><abstract>Speaker verification and utterance verification are examples of techniques that can be used for speaker authentication purposes. Speaker verification consists of accepting or rejecting the claimed identity of a speaker by processing samples of his/her voice. Usually, these systems are based on HMM models that try to represent the characteristics of the talkers' vocal tracts. Utterance verification systems make use of a set of speaker-independent speech models to recognize a certain utterance. If the utterances consist of passwords, this can be used for identity verification purposes. Up to now, both techniques have been used separately. In this paper, we show that combining these two sources of information using neural networks outperforms both the individual classifiers and other proposed methods for combination.</abstract><pub>IEEE</pub><doi>10.1109/NNSP.2001.943150</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-3555
ispartof Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop (IEEE Cat. No.01TH8584), 2001, p.461-470
issn 1089-3555
2379-2329
language eng
recordid cdi_ieee_primary_943150
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Authentication
title Improvement of a speaker authentication system through MLP's post-processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improvement%20of%20a%20speaker%20authentication%20system%20through%20MLP's%20post-processing&rft.btitle=Neural%20Networks%20for%20Signal%20Processing%20XI:%20Proceedings%20of%20the%202001%20IEEE%20Signal%20Processing%20Society%20Workshop%20(IEEE%20Cat.%20No.01TH8584)&rft.au=Rodriguez-Linares,%20L.&rft.date=2001&rft.spage=461&rft.epage=470&rft.pages=461-470&rft.issn=1089-3555&rft.eissn=2379-2329&rft.isbn=9780780371965&rft.isbn_list=0780371968&rft_id=info:doi/10.1109/NNSP.2001.943150&rft_dat=%3Cieee_6IE%3E943150%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-a76a8e25065d7d648eadf5782253d19ef68d037602e765154deaaabe969c22a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=943150&rfr_iscdi=true