Loading…
Cooperating Networks To Enforce A Similarity Constraint In Paired But Unregistered Multimodal Liver Segmentation
We propose a method for segmenting two unregistered images from different modalities of the same patient and study at once, while enforcing a similarity constraint between the two segmentation masks. Our method relies on a segmentation network and a registration network, cooperating to get accurate...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a method for segmenting two unregistered images from different modalities of the same patient and study at once, while enforcing a similarity constraint between the two segmentation masks. Our method relies on a segmentation network and a registration network, cooperating to get accurate and consistent segmentation masks across modalities, while forcing the segmentor to use all information available. Experiments on a dataset of T1 and T2-weighted liver MRI show that our method enables to get more similar segmentation masks across modalities than manual annotations, without deteriorating the performance (Dice =0.95 for T1, 0.92 for T2). |
---|---|
ISSN: | 1945-8452 |
DOI: | 10.1109/ISBI48211.2021.9433767 |