Loading…
Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography
Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical co...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433 |
---|---|
cites | |
container_end_page | 242 |
container_issue | |
container_start_page | 238 |
container_title | |
container_volume | |
creator | Hassan, Osama N. Menten, Martin J. Bogunovic, Hrvoje Schmidt-Erfurth, Ursula Lotery, Andrew Rueckert, Daniel |
description | Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical coherence tomography (OCT) scans. Following on these studies, we evaluated the use of three-dimensional CNNs for predicting the subject's age and sex directly from 3D retinal OCT scans. We also assessed the effect of the receptive field size on the model performance. In addition, we adopted a robust and simple bias-adjustment scheme for further performance enhancement of eye age prediction. We used a large dataset consisting of 66,767 subjects with OCT scans from the UK Biobank data and evaluated our model on 10% of the dataset (i.e. 6,676 subjects). An accurate prediction was obtained for age (mean absolute error (MAE): 3.3 years, coefficient of determination R 2 : 0.89) while an acceptable performance was achieved for sex (area under the curve (AUC): 0.86). |
doi_str_mv | 10.1109/ISBI48211.2021.9434107 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9434107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9434107</ieee_id><sourcerecordid>9434107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433</originalsourceid><addsrcrecordid>eNotj91KwzAYQKMgOOeeQJC8QGu-5GvaXtbptFCosHk9suRLV1l_SHvh3l5hOzfn7sBh7BlEDCDyl3L7WmImAWIpJMQ5KgSR3rAH0DpBkKjhli0gxyTKMJH3bDVNP-KfFFEJXLDyjWjkFZnQt33DvwK51s7t0PPa86IhXvSOb-mXb8LQ8XqcW2tOfD0cKVBvie-GbmiCGY_nR3bnzWmi1dVL9r15360_o6r-KNdFFVmZ6DnyTpPHQ-5RAFpB6A-JB8ycNi4DksZYkDLLM22d8hYUOu1yk6RKaEOo1JI9XbotEe3H0HYmnPfXc_UHTA5NBA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography</title><source>IEEE Xplore All Conference Series</source><creator>Hassan, Osama N. ; Menten, Martin J. ; Bogunovic, Hrvoje ; Schmidt-Erfurth, Ursula ; Lotery, Andrew ; Rueckert, Daniel</creator><creatorcontrib>Hassan, Osama N. ; Menten, Martin J. ; Bogunovic, Hrvoje ; Schmidt-Erfurth, Ursula ; Lotery, Andrew ; Rueckert, Daniel</creatorcontrib><description>Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical coherence tomography (OCT) scans. Following on these studies, we evaluated the use of three-dimensional CNNs for predicting the subject's age and sex directly from 3D retinal OCT scans. We also assessed the effect of the receptive field size on the model performance. In addition, we adopted a robust and simple bias-adjustment scheme for further performance enhancement of eye age prediction. We used a large dataset consisting of 66,767 subjects with OCT scans from the UK Biobank data and evaluated our model on 10% of the dataset (i.e. 6,676 subjects). An accurate prediction was obtained for age (mean absolute error (MAE): 3.3 years, coefficient of determination R 2 : 0.89) while an acceptable performance was achieved for sex (area under the curve (AUC): 0.86).</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1665412461</identifier><identifier>EISBN: 9781665412469</identifier><identifier>DOI: 10.1109/ISBI48211.2021.9434107</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D-CNNs ; Age Prediction ; BagNet ; Biological system modeling ; Data models ; Deep Learning ; OCT ; Optical coherence tomography ; ResNet ; Retina ; Sex Prediction ; Systematics ; Three-dimensional displays ; Training</subject><ispartof>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, p.238-242</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9434107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9434107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hassan, Osama N.</creatorcontrib><creatorcontrib>Menten, Martin J.</creatorcontrib><creatorcontrib>Bogunovic, Hrvoje</creatorcontrib><creatorcontrib>Schmidt-Erfurth, Ursula</creatorcontrib><creatorcontrib>Lotery, Andrew</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><title>Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography</title><title>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical coherence tomography (OCT) scans. Following on these studies, we evaluated the use of three-dimensional CNNs for predicting the subject's age and sex directly from 3D retinal OCT scans. We also assessed the effect of the receptive field size on the model performance. In addition, we adopted a robust and simple bias-adjustment scheme for further performance enhancement of eye age prediction. We used a large dataset consisting of 66,767 subjects with OCT scans from the UK Biobank data and evaluated our model on 10% of the dataset (i.e. 6,676 subjects). An accurate prediction was obtained for age (mean absolute error (MAE): 3.3 years, coefficient of determination R 2 : 0.89) while an acceptable performance was achieved for sex (area under the curve (AUC): 0.86).</description><subject>3D-CNNs</subject><subject>Age Prediction</subject><subject>BagNet</subject><subject>Biological system modeling</subject><subject>Data models</subject><subject>Deep Learning</subject><subject>OCT</subject><subject>Optical coherence tomography</subject><subject>ResNet</subject><subject>Retina</subject><subject>Sex Prediction</subject><subject>Systematics</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>1945-8452</issn><isbn>1665412461</isbn><isbn>9781665412469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KwzAYQKMgOOeeQJC8QGu-5GvaXtbptFCosHk9suRLV1l_SHvh3l5hOzfn7sBh7BlEDCDyl3L7WmImAWIpJMQ5KgSR3rAH0DpBkKjhli0gxyTKMJH3bDVNP-KfFFEJXLDyjWjkFZnQt33DvwK51s7t0PPa86IhXvSOb-mXb8LQ8XqcW2tOfD0cKVBvie-GbmiCGY_nR3bnzWmi1dVL9r15360_o6r-KNdFFVmZ6DnyTpPHQ-5RAFpB6A-JB8ycNi4DksZYkDLLM22d8hYUOu1yk6RKaEOo1JI9XbotEe3H0HYmnPfXc_UHTA5NBA</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>Hassan, Osama N.</creator><creator>Menten, Martin J.</creator><creator>Bogunovic, Hrvoje</creator><creator>Schmidt-Erfurth, Ursula</creator><creator>Lotery, Andrew</creator><creator>Rueckert, Daniel</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210413</creationdate><title>Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography</title><author>Hassan, Osama N. ; Menten, Martin J. ; Bogunovic, Hrvoje ; Schmidt-Erfurth, Ursula ; Lotery, Andrew ; Rueckert, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D-CNNs</topic><topic>Age Prediction</topic><topic>BagNet</topic><topic>Biological system modeling</topic><topic>Data models</topic><topic>Deep Learning</topic><topic>OCT</topic><topic>Optical coherence tomography</topic><topic>ResNet</topic><topic>Retina</topic><topic>Sex Prediction</topic><topic>Systematics</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Osama N.</creatorcontrib><creatorcontrib>Menten, Martin J.</creatorcontrib><creatorcontrib>Bogunovic, Hrvoje</creatorcontrib><creatorcontrib>Schmidt-Erfurth, Ursula</creatorcontrib><creatorcontrib>Lotery, Andrew</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hassan, Osama N.</au><au>Menten, Martin J.</au><au>Bogunovic, Hrvoje</au><au>Schmidt-Erfurth, Ursula</au><au>Lotery, Andrew</au><au>Rueckert, Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography</atitle><btitle>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2021-04-13</date><risdate>2021</risdate><spage>238</spage><epage>242</epage><pages>238-242</pages><eissn>1945-8452</eissn><eisbn>1665412461</eisbn><eisbn>9781665412469</eisbn><abstract>Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical coherence tomography (OCT) scans. Following on these studies, we evaluated the use of three-dimensional CNNs for predicting the subject's age and sex directly from 3D retinal OCT scans. We also assessed the effect of the receptive field size on the model performance. In addition, we adopted a robust and simple bias-adjustment scheme for further performance enhancement of eye age prediction. We used a large dataset consisting of 66,767 subjects with OCT scans from the UK Biobank data and evaluated our model on 10% of the dataset (i.e. 6,676 subjects). An accurate prediction was obtained for age (mean absolute error (MAE): 3.3 years, coefficient of determination R 2 : 0.89) while an acceptable performance was achieved for sex (area under the curve (AUC): 0.86).</abstract><pub>IEEE</pub><doi>10.1109/ISBI48211.2021.9434107</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-8452 |
ispartof | 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, p.238-242 |
issn | 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_9434107 |
source | IEEE Xplore All Conference Series |
subjects | 3D-CNNs Age Prediction BagNet Biological system modeling Data models Deep Learning OCT Optical coherence tomography ResNet Retina Sex Prediction Systematics Three-dimensional displays Training |
title | Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Learning%20Prediction%20Of%20Age%20And%20Sex%20From%20Optical%20Coherence%20Tomography&rft.btitle=2021%20IEEE%2018th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Hassan,%20Osama%20N.&rft.date=2021-04-13&rft.spage=238&rft.epage=242&rft.pages=238-242&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI48211.2021.9434107&rft.eisbn=1665412461&rft.eisbn_list=9781665412469&rft_dat=%3Cieee_CHZPO%3E9434107%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9434107&rfr_iscdi=true |