Loading…

Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography

Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical co...

Full description

Saved in:
Bibliographic Details
Main Authors: Hassan, Osama N., Menten, Martin J., Bogunovic, Hrvoje, Schmidt-Erfurth, Ursula, Lotery, Andrew, Rueckert, Daniel
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433
cites
container_end_page 242
container_issue
container_start_page 238
container_title
container_volume
creator Hassan, Osama N.
Menten, Martin J.
Bogunovic, Hrvoje
Schmidt-Erfurth, Ursula
Lotery, Andrew
Rueckert, Daniel
description Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical coherence tomography (OCT) scans. Following on these studies, we evaluated the use of three-dimensional CNNs for predicting the subject's age and sex directly from 3D retinal OCT scans. We also assessed the effect of the receptive field size on the model performance. In addition, we adopted a robust and simple bias-adjustment scheme for further performance enhancement of eye age prediction. We used a large dataset consisting of 66,767 subjects with OCT scans from the UK Biobank data and evaluated our model on 10% of the dataset (i.e. 6,676 subjects). An accurate prediction was obtained for age (mean absolute error (MAE): 3.3 years, coefficient of determination R 2 : 0.89) while an acceptable performance was achieved for sex (area under the curve (AUC): 0.86).
doi_str_mv 10.1109/ISBI48211.2021.9434107
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9434107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9434107</ieee_id><sourcerecordid>9434107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433</originalsourceid><addsrcrecordid>eNotj91KwzAYQKMgOOeeQJC8QGu-5GvaXtbptFCosHk9suRLV1l_SHvh3l5hOzfn7sBh7BlEDCDyl3L7WmImAWIpJMQ5KgSR3rAH0DpBkKjhli0gxyTKMJH3bDVNP-KfFFEJXLDyjWjkFZnQt33DvwK51s7t0PPa86IhXvSOb-mXb8LQ8XqcW2tOfD0cKVBvie-GbmiCGY_nR3bnzWmi1dVL9r15360_o6r-KNdFFVmZ6DnyTpPHQ-5RAFpB6A-JB8ycNi4DksZYkDLLM22d8hYUOu1yk6RKaEOo1JI9XbotEe3H0HYmnPfXc_UHTA5NBA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography</title><source>IEEE Xplore All Conference Series</source><creator>Hassan, Osama N. ; Menten, Martin J. ; Bogunovic, Hrvoje ; Schmidt-Erfurth, Ursula ; Lotery, Andrew ; Rueckert, Daniel</creator><creatorcontrib>Hassan, Osama N. ; Menten, Martin J. ; Bogunovic, Hrvoje ; Schmidt-Erfurth, Ursula ; Lotery, Andrew ; Rueckert, Daniel</creatorcontrib><description>Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical coherence tomography (OCT) scans. Following on these studies, we evaluated the use of three-dimensional CNNs for predicting the subject's age and sex directly from 3D retinal OCT scans. We also assessed the effect of the receptive field size on the model performance. In addition, we adopted a robust and simple bias-adjustment scheme for further performance enhancement of eye age prediction. We used a large dataset consisting of 66,767 subjects with OCT scans from the UK Biobank data and evaluated our model on 10% of the dataset (i.e. 6,676 subjects). An accurate prediction was obtained for age (mean absolute error (MAE): 3.3 years, coefficient of determination R 2 : 0.89) while an acceptable performance was achieved for sex (area under the curve (AUC): 0.86).</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1665412461</identifier><identifier>EISBN: 9781665412469</identifier><identifier>DOI: 10.1109/ISBI48211.2021.9434107</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D-CNNs ; Age Prediction ; BagNet ; Biological system modeling ; Data models ; Deep Learning ; OCT ; Optical coherence tomography ; ResNet ; Retina ; Sex Prediction ; Systematics ; Three-dimensional displays ; Training</subject><ispartof>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, p.238-242</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9434107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9434107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hassan, Osama N.</creatorcontrib><creatorcontrib>Menten, Martin J.</creatorcontrib><creatorcontrib>Bogunovic, Hrvoje</creatorcontrib><creatorcontrib>Schmidt-Erfurth, Ursula</creatorcontrib><creatorcontrib>Lotery, Andrew</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><title>Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography</title><title>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical coherence tomography (OCT) scans. Following on these studies, we evaluated the use of three-dimensional CNNs for predicting the subject's age and sex directly from 3D retinal OCT scans. We also assessed the effect of the receptive field size on the model performance. In addition, we adopted a robust and simple bias-adjustment scheme for further performance enhancement of eye age prediction. We used a large dataset consisting of 66,767 subjects with OCT scans from the UK Biobank data and evaluated our model on 10% of the dataset (i.e. 6,676 subjects). An accurate prediction was obtained for age (mean absolute error (MAE): 3.3 years, coefficient of determination R 2 : 0.89) while an acceptable performance was achieved for sex (area under the curve (AUC): 0.86).</description><subject>3D-CNNs</subject><subject>Age Prediction</subject><subject>BagNet</subject><subject>Biological system modeling</subject><subject>Data models</subject><subject>Deep Learning</subject><subject>OCT</subject><subject>Optical coherence tomography</subject><subject>ResNet</subject><subject>Retina</subject><subject>Sex Prediction</subject><subject>Systematics</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>1945-8452</issn><isbn>1665412461</isbn><isbn>9781665412469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KwzAYQKMgOOeeQJC8QGu-5GvaXtbptFCosHk9suRLV1l_SHvh3l5hOzfn7sBh7BlEDCDyl3L7WmImAWIpJMQ5KgSR3rAH0DpBkKjhli0gxyTKMJH3bDVNP-KfFFEJXLDyjWjkFZnQt33DvwK51s7t0PPa86IhXvSOb-mXb8LQ8XqcW2tOfD0cKVBvie-GbmiCGY_nR3bnzWmi1dVL9r15360_o6r-KNdFFVmZ6DnyTpPHQ-5RAFpB6A-JB8ycNi4DksZYkDLLM22d8hYUOu1yk6RKaEOo1JI9XbotEe3H0HYmnPfXc_UHTA5NBA</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>Hassan, Osama N.</creator><creator>Menten, Martin J.</creator><creator>Bogunovic, Hrvoje</creator><creator>Schmidt-Erfurth, Ursula</creator><creator>Lotery, Andrew</creator><creator>Rueckert, Daniel</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210413</creationdate><title>Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography</title><author>Hassan, Osama N. ; Menten, Martin J. ; Bogunovic, Hrvoje ; Schmidt-Erfurth, Ursula ; Lotery, Andrew ; Rueckert, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D-CNNs</topic><topic>Age Prediction</topic><topic>BagNet</topic><topic>Biological system modeling</topic><topic>Data models</topic><topic>Deep Learning</topic><topic>OCT</topic><topic>Optical coherence tomography</topic><topic>ResNet</topic><topic>Retina</topic><topic>Sex Prediction</topic><topic>Systematics</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Osama N.</creatorcontrib><creatorcontrib>Menten, Martin J.</creatorcontrib><creatorcontrib>Bogunovic, Hrvoje</creatorcontrib><creatorcontrib>Schmidt-Erfurth, Ursula</creatorcontrib><creatorcontrib>Lotery, Andrew</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hassan, Osama N.</au><au>Menten, Martin J.</au><au>Bogunovic, Hrvoje</au><au>Schmidt-Erfurth, Ursula</au><au>Lotery, Andrew</au><au>Rueckert, Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography</atitle><btitle>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2021-04-13</date><risdate>2021</risdate><spage>238</spage><epage>242</epage><pages>238-242</pages><eissn>1945-8452</eissn><eisbn>1665412461</eisbn><eisbn>9781665412469</eisbn><abstract>Convolutional neural networks (CNNs) have achieved remarkable success in predicting clinical information and individuals' characteristics from medical images. Previous ophthalmological studies have suggested that age and sex have retinal manifestations that can be observed in retinal optical coherence tomography (OCT) scans. Following on these studies, we evaluated the use of three-dimensional CNNs for predicting the subject's age and sex directly from 3D retinal OCT scans. We also assessed the effect of the receptive field size on the model performance. In addition, we adopted a robust and simple bias-adjustment scheme for further performance enhancement of eye age prediction. We used a large dataset consisting of 66,767 subjects with OCT scans from the UK Biobank data and evaluated our model on 10% of the dataset (i.e. 6,676 subjects). An accurate prediction was obtained for age (mean absolute error (MAE): 3.3 years, coefficient of determination R 2 : 0.89) while an acceptable performance was achieved for sex (area under the curve (AUC): 0.86).</abstract><pub>IEEE</pub><doi>10.1109/ISBI48211.2021.9434107</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, p.238-242
issn 1945-8452
language eng
recordid cdi_ieee_primary_9434107
source IEEE Xplore All Conference Series
subjects 3D-CNNs
Age Prediction
BagNet
Biological system modeling
Data models
Deep Learning
OCT
Optical coherence tomography
ResNet
Retina
Sex Prediction
Systematics
Three-dimensional displays
Training
title Deep Learning Prediction Of Age And Sex From Optical Coherence Tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Learning%20Prediction%20Of%20Age%20And%20Sex%20From%20Optical%20Coherence%20Tomography&rft.btitle=2021%20IEEE%2018th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Hassan,%20Osama%20N.&rft.date=2021-04-13&rft.spage=238&rft.epage=242&rft.pages=238-242&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI48211.2021.9434107&rft.eisbn=1665412461&rft.eisbn_list=9781665412469&rft_dat=%3Cieee_CHZPO%3E9434107%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-fd6ef4b9f4014c0e4fb5f148d6ad81e2aac1228986cd3fc134d6d9a57306ae433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9434107&rfr_iscdi=true