Loading…

A Class of Linear-Nonlinear Switching Active Disturbance Rejection Speed and Current Controllers for PMSM

This article investigates a class of linear-nonlinear switching active disturbance rejection control (ADRC) to design speed controllers and current controllers for permanent magnet synchronous machine (PMSM) in servo systems, which aims at enhancing the ability of disturbance rejection of speed and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2021-12, Vol.36 (12), p.14366-14382
Main Authors: Lin, Ping, Wu, Zhen, Liu, Kun-Zhi, Sun, Xi-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article investigates a class of linear-nonlinear switching active disturbance rejection control (ADRC) to design speed controllers and current controllers for permanent magnet synchronous machine (PMSM) in servo systems, which aims at enhancing the ability of disturbance rejection of speed and current controllers for PMSM. First, the mathematical model of PMSM is introduced. Next, the design of a class of linear-nonlinear switching ADRCs is introduced in details. Then, the stability of linear-nonlinear switching extended state observers (ESOs) is proved by multiple Lyapunov functions. Lastly, the effectiveness of the speed and current controllers based on the linear-nonlinear active disturbance rejection technique is validated by experiments results of a 5.5-kW PMSM platform. Specially, the experiment results of the speed controllers illustrate that the amplitude of speed change of the proposed ADRCs is smaller than that of the linear ADRC (LADRC) when the step load torque disturbance occurs. The proposed ADRCs can overcome the overshoot of speed response caused by improper parameter setting of LADRC. The experiment results of the current controllers show that the proposed LNSADRC type 2 has greater robustness than the other ADRC controllers when b_{02} is not estimated accurately.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2021.3086273