Loading…

Dynamic inverse optimization

While system identification has traditionally concentrated on identifying systems driven by explicit ordinary differential equations, the recent explosion in computational power has made feasible systems whose dynamics are partly driven by real-time optimization processes. Identification algorithms...

Full description

Saved in:
Bibliographic Details
Main Authors: Gentry, S., Saligrama, V., Feron, E.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4727 vol.6
container_issue
container_start_page 4722
container_title
container_volume 6
creator Gentry, S.
Saligrama, V.
Feron, E.
description While system identification has traditionally concentrated on identifying systems driven by explicit ordinary differential equations, the recent explosion in computational power has made feasible systems whose dynamics are partly driven by real-time optimization processes. Identification algorithms which could pinpoint the optimization parameters used to drive these closed-loop control systems would clearly find application to receding horizon controllers and other control processes which incorporate online optimization. This work describes a procedure which identifies the optimization parameters at work in many types of receding horizon controllers. If all the control and state constraints are known, then the problem may be recast as identification of objective parameters of a real-time, static optimization problem. Using the necessary conditions of optimality in some cases of interest, this problem is shown to be equivalent to solving a feasibility semi-definite program. In alternate setups, the necessary conditions of optimality lead to a formulation of the identification problem as a feasibility linear or integer program.
doi_str_mv 10.1109/ACC.2001.945728
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_945728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>945728</ieee_id><sourcerecordid>945728</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-efaf67da074d90b7f5509b94b66005570f26164f90f64d8fbca5051e8bde99aa3</originalsourceid><addsrcrecordid>eNotj8tqwzAQRUUfUDfNulC6yA_IndFjpFkG9wmBbtp1kGIJVGon2KaQfn0NKVy4q3MPV4hbhBoR-GHdNLUCwJqNdcqfiUpp56X1hOdiyc7DHE2GLVyICpzREgn5SlyP49fMMRNU4v7x2Ieu7Fal_0nDmFb7w1S68humsu9vxGUO32Na_vdCfD4_fTSvcvP-8tasN7KgU5NMOWRybZgdLUN02VrgyCYSAVjrICtCMpkhk2l9jrtgwWLysU3MIeiFuDvtlpTS9jCULgzH7emX_gPcQz3b</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic inverse optimization</title><source>IEEE Xplore All Conference Series</source><creator>Gentry, S. ; Saligrama, V. ; Feron, E.</creator><creatorcontrib>Gentry, S. ; Saligrama, V. ; Feron, E.</creatorcontrib><description>While system identification has traditionally concentrated on identifying systems driven by explicit ordinary differential equations, the recent explosion in computational power has made feasible systems whose dynamics are partly driven by real-time optimization processes. Identification algorithms which could pinpoint the optimization parameters used to drive these closed-loop control systems would clearly find application to receding horizon controllers and other control processes which incorporate online optimization. This work describes a procedure which identifies the optimization parameters at work in many types of receding horizon controllers. If all the control and state constraints are known, then the problem may be recast as identification of objective parameters of a real-time, static optimization problem. Using the necessary conditions of optimality in some cases of interest, this problem is shown to be equivalent to solving a feasibility semi-definite program. In alternate setups, the necessary conditions of optimality lead to a formulation of the identification problem as a feasibility linear or integer program.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9780780364950</identifier><identifier>ISBN: 0780364953</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.1109/ACC.2001.945728</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constraint optimization ; Control systems ; Differential equations ; Explosions ; Large-scale systems ; Optimal control ; Pressing ; Process control ; Real time systems ; System identification</subject><ispartof>Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), 2001, Vol.6, p.4722-4727 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/945728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/945728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gentry, S.</creatorcontrib><creatorcontrib>Saligrama, V.</creatorcontrib><creatorcontrib>Feron, E.</creatorcontrib><title>Dynamic inverse optimization</title><title>Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148)</title><addtitle>ACC</addtitle><description>While system identification has traditionally concentrated on identifying systems driven by explicit ordinary differential equations, the recent explosion in computational power has made feasible systems whose dynamics are partly driven by real-time optimization processes. Identification algorithms which could pinpoint the optimization parameters used to drive these closed-loop control systems would clearly find application to receding horizon controllers and other control processes which incorporate online optimization. This work describes a procedure which identifies the optimization parameters at work in many types of receding horizon controllers. If all the control and state constraints are known, then the problem may be recast as identification of objective parameters of a real-time, static optimization problem. Using the necessary conditions of optimality in some cases of interest, this problem is shown to be equivalent to solving a feasibility semi-definite program. In alternate setups, the necessary conditions of optimality lead to a formulation of the identification problem as a feasibility linear or integer program.</description><subject>Constraint optimization</subject><subject>Control systems</subject><subject>Differential equations</subject><subject>Explosions</subject><subject>Large-scale systems</subject><subject>Optimal control</subject><subject>Pressing</subject><subject>Process control</subject><subject>Real time systems</subject><subject>System identification</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9780780364950</isbn><isbn>0780364953</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tqwzAQRUUfUDfNulC6yA_IndFjpFkG9wmBbtp1kGIJVGon2KaQfn0NKVy4q3MPV4hbhBoR-GHdNLUCwJqNdcqfiUpp56X1hOdiyc7DHE2GLVyICpzREgn5SlyP49fMMRNU4v7x2Ieu7Fal_0nDmFb7w1S68humsu9vxGUO32Na_vdCfD4_fTSvcvP-8tasN7KgU5NMOWRybZgdLUN02VrgyCYSAVjrICtCMpkhk2l9jrtgwWLysU3MIeiFuDvtlpTS9jCULgzH7emX_gPcQz3b</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Gentry, S.</creator><creator>Saligrama, V.</creator><creator>Feron, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Dynamic inverse optimization</title><author>Gentry, S. ; Saligrama, V. ; Feron, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-efaf67da074d90b7f5509b94b66005570f26164f90f64d8fbca5051e8bde99aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Constraint optimization</topic><topic>Control systems</topic><topic>Differential equations</topic><topic>Explosions</topic><topic>Large-scale systems</topic><topic>Optimal control</topic><topic>Pressing</topic><topic>Process control</topic><topic>Real time systems</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Gentry, S.</creatorcontrib><creatorcontrib>Saligrama, V.</creatorcontrib><creatorcontrib>Feron, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gentry, S.</au><au>Saligrama, V.</au><au>Feron, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic inverse optimization</atitle><btitle>Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148)</btitle><stitle>ACC</stitle><date>2001</date><risdate>2001</risdate><volume>6</volume><spage>4722</spage><epage>4727 vol.6</epage><pages>4722-4727 vol.6</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9780780364950</isbn><isbn>0780364953</isbn><abstract>While system identification has traditionally concentrated on identifying systems driven by explicit ordinary differential equations, the recent explosion in computational power has made feasible systems whose dynamics are partly driven by real-time optimization processes. Identification algorithms which could pinpoint the optimization parameters used to drive these closed-loop control systems would clearly find application to receding horizon controllers and other control processes which incorporate online optimization. This work describes a procedure which identifies the optimization parameters at work in many types of receding horizon controllers. If all the control and state constraints are known, then the problem may be recast as identification of objective parameters of a real-time, static optimization problem. Using the necessary conditions of optimality in some cases of interest, this problem is shown to be equivalent to solving a feasibility semi-definite program. In alternate setups, the necessary conditions of optimality lead to a formulation of the identification problem as a feasibility linear or integer program.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2001.945728</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), 2001, Vol.6, p.4722-4727 vol.6
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_945728
source IEEE Xplore All Conference Series
subjects Constraint optimization
Control systems
Differential equations
Explosions
Large-scale systems
Optimal control
Pressing
Process control
Real time systems
System identification
title Dynamic inverse optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20inverse%20optimization&rft.btitle=Proceedings%20of%20the%202001%20American%20Control%20Conference.%20(Cat.%20No.01CH37148)&rft.au=Gentry,%20S.&rft.date=2001&rft.volume=6&rft.spage=4722&rft.epage=4727%20vol.6&rft.pages=4722-4727%20vol.6&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9780780364950&rft.isbn_list=0780364953&rft_id=info:doi/10.1109/ACC.2001.945728&rft_dat=%3Cieee_CHZPO%3E945728%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-efaf67da074d90b7f5509b94b66005570f26164f90f64d8fbca5051e8bde99aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=945728&rfr_iscdi=true