Loading…
SALSA: Self-Adjusting Lean Streaming Analytics
Counters are the fundamental building block of many data sketching schemes, which hash items to a small number of counters and account for collisions to provide good approximations for frequencies and other measures. Most existing methods rely on fixed-size counters, which may be wasteful in terms o...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Counters are the fundamental building block of many data sketching schemes, which hash items to a small number of counters and account for collisions to provide good approximations for frequencies and other measures. Most existing methods rely on fixed-size counters, which may be wasteful in terms of space, as counters must be large enough to eliminate any risk of overflow. Instead, some solutions use small, fixed-size counters that may overflow into secondary structures.This paper takes a different approach. We propose a simple and general method called SALSA for dynamic re-sizing of counters, and show its effectiveness. SALSA starts with small counters, and overflowing counters simply merge with their neighbors. SALSA can thereby allow more counters for a given space, expanding them as necessary to represent large numbers. Our evaluation demonstrates that, at the cost of a small overhead for its merging logic, SALSA significantly improves the accuracy of popular schemes (such as Count-Min Sketch and Count Sketch) over a variety of tasks. Our code is released as open source [1]. |
---|---|
ISSN: | 2375-026X |
DOI: | 10.1109/ICDE51399.2021.00080 |